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ABSTRACT 
 

 Every year, natural disasters take a great toll on the economy and infrastructure of the 

United States.  When specifically considering the insured property losses of U.S. natural 

disasters, seven out of ten highest natural disasters are caused by a hurricane event.  

Hurricane seasons have increased in activity over the past few years, with the 2005 Atlantic 

storm season seeing 14 hurricanes, 7 of which were major hurricanes.  This thesis focuses on 

an analysis performed under the winds of Hurricane Katrina on an instrumented roof 

structure of a house built in Pensacola, Florida.  The data recorded is compared to results 

obtained from a theoretical finite element (FE) model as well as those stipulated from a 

design standard.   

 The instrumented test structure was a low-rise residential house with 76 pressure cells 

attached to the hip roof sheathing and 68 load cells placed between the rafters/trusses and the 

top of the wall.  A wind anemometer was located near the test structure to record the wind’s 

angle of attack and speeds during a hurricane event.  Although Hurricane Katrina data is the 

focus of this report, the test structure, which was built in 2002, has experienced several other 

hurricanes.  Data recorded during Hurricane Katrina data was chosen to be analyzed and 

compared against the FE analysis results as this storm event produced one of the highest peak 

wind speed of 56.2 mph.   

 The results from the FE model was compared to Hurricane Katrina field data by 

performing a gravity analysis, analyzing equivalent loads from three wind speeds, and 

comparing the field data to the requirements of ASCE 7-02 Standard.  The gravity analysis 

was important to verify that the assumptions used in the FE model were satisfactory and 
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produce the load distribution similar to that observed for gravity loads determined from the 

field data at very low wind speeds during Hurricane Katrina.    

The three static wind pressures were applied to the FE model to determine if the FE 

model was comparable to the wind loading at the particular times during Hurricane Katrina.  

The model showed that the FE model was significantly higher in wind loading than the field 

data because all sheathing elements in the FE model had wind pressures applied normal to 

the test roof.  Also, the linear interpolation used for the applied wind pressures to the FE 

model could have been different from what was measured in the field over the test roof. 

Thirdly, the ASCE 7-02 Standard wind loads were analyzed for both applied 

pressures and total wind loading on the test roof for a comparative analysis to the field data.  

This was done to investigate the adequate representation of wind loads in the ASCE 7-02 

Standard.  The results showed that the components and cladding (C&C) wind pressures were 

much greater than the main wind force-resistance system (MWFRS) since C&C accounts for 

the localized effect that could occur.  The conservativeness of the ASCE 7-02 Standard could 

not be addressed for the MWFRS applied pressures at the peak wind speed of 56.2 mph 

during Hurricane Katrina because the averaged load cell reactions of the field data fluctuated 

greatly in adjacent load cells.  However the Standard wasn’t conservative when comparing 

the C&C design pressures to the field data.   

Overall the loads induced by wind effects on the test roof during Hurricane Katrina 

were small in comparison to gravity effects, if the peak wind speed of a hurricane event been 

greater, then the field data may provide a better comparison to FE analysis results.  This 

leaves many areas of future studies for finite element analysis such as dynamic loads, fatigue, 

or cyclic loading.  A field test of the test roof is greatly needed to get a satisfactory feel for 
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correct gravity loading to be established for the future studies of the test structure.  Also, the 

precipitation during the hurricane event should be studied as this is suspected to have 

influenced the load cell data.    
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CHAPTER 1.  INTRODUCTION 

 

1.1   Hurricane Damage to Residential Structures 

On August 29, 2005, Hurricane Katrina slammed into the United States Gulf Coast as 

one of the most deadly hurricanes in United States history.  Hurricane Katrina was the 

costliest hurricane ever to strike the United States, and two others in that same season 

(Wilma and Rita) made the top 10 costliest hurricanes (Infoplease, 2006).  The estimated 

value of damage caused by Hurricane Katrina was approximately $80 billion (Infoplease, 

2006).   

The 2005 Atlantic hurricane season included 27 named storms, 14 of which 

developed into hurricanes and was the most active in the 154 year history, for which weather 

records have been tracked by the United States government (Infoplease, 2006).  Of these 

hurricanes, three storms were classified as category 5 storms, or those with the greatest 

potential to cause severe damage.  Seven of the 27 storms occurring in 2005 were classified 

as major hurricanes (category 3 or higher), while only four of the seven storms actually 

impacted the United States.  An average season based on the past 40 years would have had 

eleven named storms and six hurricanes, including two major hurricanes.  This information 

reveals the severity of the Atlantic hurricane season experienced in 2005.   

Each year natural disasters take a huge toll on the United States.  This toll is 

commonly measured in deaths, injuries, property damage, and economic losses.  Property 

damage and economic losses from hurricanes have increased with population growth in 

coastal areas.  The likelihood of property damage seemed minimal for those along the East 
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and Gulf coasts of the U.S. throughout the significant period of residential and commercial 

development in the 1970s and 1980s.  At that time, these coastal areas were not as active 

during tropical storm seasons, with many homeowners never experiencing severe hurricanes.  

In Florida, a major hurricane had not hit land for 30 years since Hurricane Betsey in 1965, 

putting a false sense of security in the minds of homeowners (Ayscue, 1996).  Although 

storm activity has increased since the 1980s, today’s structural designs provide safer 

dwellings by ensuring some protection against hurricane damages due to the hurricane 

activity and subsequent design improvements made in the past 20 years. 

Table 1.1 illustrates the top 10 insured property losses incurred in the history of the 

United States due to natural or man-made hazards.  These losses were adjusted for 2005 

United States dollars (Insurance Information Institute, 2006).   

 

Table 1.1.  Top ten insured property losses in United States (in billions $) (Insurance 
Information Institute, 2006) 

   Insured Loss ($ Billions)

Rank Date Disaster 

Dollars 
When 

occurred 
In 2005 

Dollars (2) 
1 Aug. 2005 Hurricane Katrina 40.6 40.6
2 Aug. 1992 Hurricane Andrew 15.5 21.576
3 Sept. 2001 World Trade Center & Pentagon Terrorist Attacks 18.8 20.732
4 Jan. 2004 Northridge, CA Earthquake 12.5 16.473
5 Oct. 2005 Hurricane Wilma 10.3 10.3
6 Aug. 2004 Hurricane Charley 7.475 7.728
7 Aug. 2004 Hurricane Ivan 7.11 7.351
8 Sept. 1989 Hurricane Hugo 4.195 6.607
9 Sept. 2005 Hurricane Rita 5 5
10 Aug. 2004 Hurricane Frances 4.595 4.751

 Source Insurance Service Office, Insurance Information Institute 
  
 (1) Property coverage only   
 (2) Adjusted to 2005 dollars by the Insurance Information Institute  
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1.2 Brief Hurricane History 

Hurricanes are tropical cyclones, which are low pressure systems that generally form 

over large expanses of water.  Tropical cyclones become a hurricane when the intense 

tropical weather system produces strong thunderstorms with a well-defined surface 

circulation and maximum sustained winds of 74 mph or higher.  A sustained wind is 

classified by having a 1-minute average wind, measured at about 33 ft. (10 m) above the 

surface (National Hurricane Preparedness, 2006).  Hurricanes are classified according to the 

strength of their wind.  There are five classifications for hurricanes and are represented by the 

Saffir – Simpson Hurricane Scale.  Table 1.2 describes this scale in detail. 

 

Table 1.2.  Saffir – Simpson Hurricane Scale (FEMA, 2006) 

Category Definition Effects  

One Winds 74-95 
mph 

No real damage to building structures. Damage primarily to unanchored mobile 
homes, shrubbery, and trees. Also, some coastal road flooding and minor pier 
damage 

Two Winds 96-110 
mph 

Some roofing material, door, and window damage to buildings. Considerable damage 
to vegetation, mobile homes, and piers. Coastal and low-lying escape routes flood 2-4 
hours before arrival of center. Small craft in unprotected anchorages break moorings. 

Three Winds 111-
130 mph 

Some structural damage to small residences and utility buildings with a minor amount 
of curtainwall failures. Mobile homes are destroyed. Flooding near the coast destroys 
smaller structures with larger structures damaged by floating debris. Terrain 
continuously lower than 5 feet ASL may be flooded inland 8 miles or more. 

Four Winds 131-
155 mph 

More extensive curtainwall failures with some complete roof structure failure on small 
residences. Major erosion of beach. Major damage to lower floors of structures near 
the shore. Terrain continuously lower than 10 feet ASL may be flooded requiring 
massive evacuation of residential areas inland as far as 6 miles. 

Five 
Winds 
greater than 
155 mph 

Complete roof failure on many residences and industrial buildings. Some complete 
building failures with small utility buildings blown over or away. Major damage to lower 
floors of all structures located less than 15 feet ASL and within 500 yards of the 
shoreline.Massive evacuation of residential areas on low ground within 5 to 10 miles 
of the shoreline may be required. 
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1.3   Analysis of Housing for Hurricane Prone Regions 

According to Ayscue (1996), residential structures are especially vulnerable to 

damage during hurricanes because less engineering oversight is applied to design and 

construction.  “As opposed to hospitals and public buildings, which are considered “fully 

engineered,” and office and light industrial buildings, which are considered “marginally 

engineered,” residential construction is categorized as “non-engineered.”(Ayscue, 1996).”  

Therefore, much needed attention must be paid to residential construction because, 

historically, the bulk of wind damage in the United States has occurred to residential 

construction.   

The following figure illustrates that most catastrophes are caused by severe winds 

such as hurricanes and tornadoes.   These catastrophes are all events causing direct insured 

losses to property of $25 million, in 2004 dollars, and are adjusted to 2005 dollars.  One 

should note that these catastrophes exclude snow and flood damage.    

 

Figure 1.1.  Inflation-adjusted U.S. catastrophe losses by cause of loss, 1986-2005 (Insurance 
Information Institute, 2006) 
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Most residential structures are timber frame systems and are commonly referred to as 

light frame buildings (LFBs).  Light frame buildings consist of many elements including the 

roof, floor, walls, and intercomponent connections.  When LFBs are exposed to hurricane 

forces, roofs are most susceptible to damage, followed by walls in particular those with 

openings, and then foundations (Ayscue, 1996).  Research by Cook, (1991) estimated that 

roof failures accounted for 80% of structural losses. 

There are a limited number of analytical models for residential construction that can 

be used for analysis under severe loads.  When modeling and analyzing LFBs, many 

simplifications and assumptions are made.  On the other hand, finite element (FE) modeling 

can be used as a tool that can analytically model the structural response when subjected to 

severe loading conditions, such as hurricanes.   

 

1.4 Scope of Research 

The purpose of the work presented here in was to develop an analytical model for a 

hip roof of a residential timber house that was constructed with extensive instrumentation to 

investigate its response during a hurricane event.  The theoretical model was developed using 

the ANSYS finite element program.  That structure was a 15 ft. tall residential house 

constructed by the Forest Products Laboratory (FPL) group based in Madison, Wisconsin.  

Located in Pensacola, Florida, the test structure survived the 2005 storm season, most 

notably Hurricane Katrina.  The test structure was instrumented to measure wind pressures at 

various locations on the roof and load cell reactions underneath the roof between the bottom 

chord of the truss members and the wall support.  The model was analyzed using the finite 

element program for the following cases: 
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• A gravity load analysis was performed and the results were compared to the 

load cell reactions obtained from the field data at the beginning and end of 

Hurricane Katrina; 

• The data from various pressure cells at various time intervals from Hurricane 

Katrina were used to analyze the wind effect on the test roof and the results 

were compared to the measured load cell data from the field; and     

• The ASCE 7-02 Standard for minimum design wind loads were utilized to 

calculate the pressure distributions that a designer may utilize and their effects 

with comparable data from the field.   
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CHAPTER 2.  LITERATURE REVIEW 

 

 This chapter of the report will focus on the studies that have been previously done for 

finite element (FE) modeling of residential structures, and particularly, a wood truss roof 

system for a light framed building.  A hurricane wind analysis on lightly framed residential 

structures was also analyzed in this study both in the field and for an analytical FE model.  

This chapter will incorporate FE modeling approaches for an entire residential structure (see 

Section 2.2), a roof system (see Section 2.3), and a single truss (see Section 2.3).  Finally, 

this chapter will address hurricane loading on residential structures (see Section 2.1) and 

applications of applying the hurricane wind forces to the FE model (see Section 2.4).  

 

2.1 Field Evaluation of Residential Houses under Hurricane Loads 

 Pinelli et al. (2004) estimated the expected annual damage induced by hurricane 

winds to residential structures in Florida.  The damage was modeled as a stepwise process.  

For example, as damage to openings in structures occurred, this gave rise to increased 

internal pressure, and resulted in a sudden collapse of the roof.  This ultimately resulted in 

immediate damage to the structure’s walls.  The five significant damage modes investigated 

by Pinelli et al. (2004) were as follows: 1) breakage of openings, 2) loss of shingles, 3) loss 

of roof or gable end sheathing, 4) roof to wall connection damage, and 5) masonry wall 

damage.  This model was further subdivided into subdamage modes according to the degree 

of damage: no damage, light, moderate, or heavy damage.  Pinelli’s research produced a 

series of Venn diagrams to represent the many different damage modes that could be 
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produced for residential structures (457 total damage state events).  Actual probabilistic input 

must be based on laboratory studies, post damage surveys, insurance claims data, engineering 

analyses and judgment, or Monte Carlo simulation methods.  The component-based model 

produced by Pinelli et al. (2004) could be used in conjunction with historical loss data, to 

which the final damage estimation can be determined. 

 Jones and Porterfield (1999) instrumented a residential two-story house in Southern 

Shores, North Carolina, to gauge the impact of winds up to and including hurricane force 

winds.  The aim of this research was to develop changes in construction methods and 

materials to reduce property loss in future storms.  This was accomplished by using various 

materials in the test house, such as the steel rods used to anchor the roof to the building’s 

foundation.  The tested two-story house is shown in Figure 2.1.  The equipment used in the 

study consisted of 13 pressure gauges on the walls and roof, 20 strain gauges on the studs and 

rafters, an ultrasonic anemometer to measure wind speed in three directions and rooftop 

equipment to measure rainfall, temperature, and barometric pressure.  From this 

instrumentation pattern, the researchers were able to measure the weather conditions, wind 

pressure on the building, and movement of the structure itself.  The system was activated in 

October 1997 and since then, has collected more than 2,000 data sets; one of which was 

Hurricane Bonnie in August 1998.  Hurricane Bonnie produced nearly 60 mph wind speeds.  

From this specific data collected, the researchers looked at the current design codes to 

determine whether or not they were conservative.  From this study, the researchers have 

concluded: the anemometer showed some significant vertical wind speeds, pressure cells 

showed high levels of pressure pulling away from the roof and eaves (suctions), pressure 

sensors reported strong values at different times and in localized areas, and the strain gages 
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connected to the wall studs and rafters showed little structural movement of the test house 

and therefore, could not say these were wind-induced movements.  It is worthy to note the 

results of this data were not found to see how well this research was in comparison to current 

design codes.     

 

 

Figure 2.1.  Two-story test house located in Southern Shores, N.C., used by Jones and 
Porterfield (1999) 

 
  

Texas Tech Hurricane Intercept Team (TTUHIT) researchers set up many 

WEMITE/SBCCOM towers in hurricane paths for data collection (Castellon, 2005).  The 

primary good of this research is to use the data to gain a better understanding of how 

hurricanes affect structures.  To deploy their instrumentation devices, the researchers haul 

several trailers that have their own power source.  The towers are strategically set up along 

the shoreline at the first hint of the hurricane landfall.  The team of researchers also uses two 

mobile Doppler radars used in collaboration with the University of Oklahoma, Texas A&M 

University, and the National Severe Storms Laboratory in Norman, Oklahoma.  The research 

towers used collected data from Hurricane Katrina, although this data is yet to be published.  

There have been 22 storms since the start of the program.  Data that the team of researchers 
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collects is distributed in the form of publications and journal articles that contribute to global 

awareness of the nature of hurricanes and their effect on the world’s environment.   

 University of Florida researchers and Clemson University researchers are currently 

involved in a joint project to measure field data from hurricanes along the Florida coastline 

(ASCE newsletter, 2001).  Portable instruments specifically built for high winds capture 

wind velocity data from various hurricanes.  This project is sponsored by The Florida 

Department and Community Affairs and is called the Florida Coastal Monitoring Program 

(FCMP).  The group of researchers are currently measuring the wind pressures on the 

exterior of residential low-rise structures.  Currently, the researchers have ten houses wired 

for obtaining hurricane data in south Florida.  The ultimate goal of this research is to set up 

houses along every vulnerable stretch of Florida shoreline and use the wind velocity and 

pressure data to calibrate wind tunnel studies and develop computational models of wind 

loads on low-rise structures.  This will provide the baseline information needed to develop 

cost efficient solutions to mitigate severe wind damage. 

  

2.2 FE Analysis of Lightly Framed Residential Houses 

Past research in modeling of lightly-framed buildings (LFB) structures has primarily 

focused on individual subassemblies and joints.  Although the behavior of the subassemblies 

is an important factor, it is generally not sufficient for understanding the overall behavior of 

an entire building as discussed in the previous section.  Modeling the entire structure is 

important because much of the response and performance of a LFB is dictated by the 

structure’s diaphragms (e.g. floor, walls, and roof) and intercomponent connections such as 

nails or metal plates for wall-to-wall, ceiling-to-wall, floor-to-wall, and roof-to-wall 
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connections (Collins et al. 2005).  Much of the previous research has focused on the analysis 

and testing of these diaphragms, especially shear walls.   

A detailed, 3D finite element model for a LFB that was tested by Phillips (1990) was 

analyzed by Kasal et al. (1994).  Kasal et al. (1994) research focused on taking individual 

substructures and components of Phillips’ (1990) experimental structure and incorporated 

them into a full-structure FE model, which was the first time this had ever been done.  The 

test house developed by Phillips (1990) was a one-story, wood-frame building, which was 

examined under quasi-static loads.  In their analysis, Kasal et al. (1994) used linear 

superelements for the roof and floor diaphragms.  The roof and floor were modeled using 

shell elements that accounted for membrane and bending stiffness to satisfactorily capture the 

diaphragm action.  The shear walls and intercomponent connections were also modeled in the 

full-scale FE model.  For more modeling details, the reader is referred to Kasal et al. (1994) 

research.  Experimental results of Phillips (1990) and analytical results of Kasal et al.’s 

(1994) research agreed closely.  The FE model results predicted reaction forces and 

deformations at the boundaries better than at the walls distant from the acting force.  Kasal et 

al. (1994) felt that the disagreements between the experimental and analytical results could 

have been due to the assumption of many properties values were taken from several 

substructures of analytical models.   

Collins et al. (2005) analyzed the same structure using a model based on FE model 

formulation of Kasal et al. (1994).  Collins’ et al. (2005) research used the FE model to 

investigate various aspects of LFB behavior under both static and dynamic loading when 

subjected to severe loading conditions.  Collins’ research did not include interior finishes and 

some other elements that are typically considered non-structural, which would have increased 



www.manaraa.com

 12

the complexity of the finite element model.  Collins recommended that, to fully quantify this 

effect of non-structural finishes, both short-term and long-term performance for a LFB would 

need to be evaluated and analyzed.   These effects may warrant the incorporation of 

additional features and capabilities into available analytical and design tools (Collins et al., 

2005). The accuracy of the analysis results was evaluated by comparing them to the test data 

using global response criteria and energy dissipation parameters describing the hysteretic 

elements used for the FE model (e.g. spring elements used as intercomponent connections).  

Global response criteria referred to the response of a LFB in 3-dimensions for forces, 

displacements, and accelerations.  Figure 2.2 shows the finite element model of the 

experimental house created by Collins et al. (2005).  Collins’ research found that the 

experimental test and finite element model test showed good comparison for the energy 

dissipation, hysteretic response, load sharing between the walls, and contribution of torsional 

response.  The results of the FE model predicted the higher order response parameters (such 

as energy dissipation) more accurately than the load or displacement prediction.   

 

 
 

Figure 2.2.  Finite Element model of a light frame building (Collins et al., 2005) 
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 All the elements shown in Figure 2.2 were shown using finite element software from 

ANSYS (Swanson Analysis Systems, 2000).  The beam elements are 3D with six degrees of 

freedom (DOF) per node and two nodes per element.  The DOF are translations and rotations 

about mutually perpendicular axes.  The mass was given as mass per unit length.  For more 

information on the beam elements, please see Section 5.1.1.1.  The shell elements in Figure 

2.2 were linear elastic with orthotropic or isotropic material properties with four nodes and 

six DOF per node.  Shell elements may have either membrane and bending action or one of 

membrane only or bending only actions.   The mass of the shell element was specified as a 

mass per unit of area for a given thickness.  For more information on the shell element, 

please see Sections 5.1.1.3 and 5.2.1.  The spring elements were the last element type used in 

Figure 2.2.  Two types of hysteresis were used for the nonlinear springs.  Both spring types 

had either a finite or zero length value, depending on the number of DOF.  The first spring 

type was the standard, nonlinear spring from ANSYS (Swanson Analysis Systems, 2000), 

possessing the following characteristics: nonlinear with piecewise linear segments, 

asymmetric or symmetric behavior, rotational or translational spring, large deflection 

capability, and nodal loads may be either forces or displacements.  The other type of 

hysteresis spring was a customized element incorporated into the ANSYS FE package 

(Swanson Analysis Systems, 2000) by Collins et al. (2005).  One key feature of this spring 

type was the incorporation of the hysteretic response of wooden structures and connections, 

such as history dependence, energy dissipation, strength and stiffness degradation, and 

pinching. 
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2.3 Roof Systems 

Wood truss systems, both for roofs and floors, offer one of the best ways to resist 

vertical loads in many structures, and have a long history of good performance.  Recently, 

configurations of roof truss assemblies have become increasing complex (Gupta, 2005), 

increasing the importance of studying the system behavior of these complex truss assemblies.  

Such studies may bring better understanding of how the loads are resisted, transferred, and 

distributed in order to design them safely and economically.   

In general, the roof is considered to be the most engineered part of the light-framed-

building (LFB) (Kasal, 1992).  Most wood trusses are pre-engineered components fabricated 

from dimension lumber and connected with metal connector plates (Gupta, 2005).  To 

construct a light frame wood truss assembly, the trusses are erected and spaced typically 0.61 

m on center (Gupta, 2005).  The sheathing is then nailed to the truss top chord members.  Not 

only is the sheathing used to cover a particular facility and carry imposed loads, but it also 

serves as a load-distributing element among trusses in the assembly.  Moreover, there are 

other structural components, such as purlins and bracing, connecting the trusses together.  

These construction characteristics make the truss assembly act as a system.  This roof system 

of the test house uses metal-plate-connected trusses, which have been widely used by the 

housing industry over the past 30 years.  Besides transmitting vertical forces into walls, the 

roof and ceiling act together as a horizontal diaphragm.   

 

2.3.1 Full-Scale Testing of Roof Systems in Residential Houses 

A vast amount of literature was reviewed on single trusses and metal-plate connected 

joints, while only a few researchers studied the system behavior of wood truss assemblies.  
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These investigators, which studied the structural behavior of wood truss assemblies, did so 

using both experimental testing and computer modeling.  Experimental testing of complex 

truss assemblies is expensive, leading researchers to test only simple truss assemblies.  Such 

tests do provide convincing results, but these results are mostly applicable to the system 

tested (Gupta, 2005).   

Full-scale testing of wood truss assemblies has mainly been studied for load sharing 

among various components of an assembly.  Wolfe and McCarthy (1989) and Wolfe and 

LaBissoniere (1991) tested four full-scale, nine-truss roof systems to improve design 

methods for light frame roof systems.  Their goals were to incorporate the results of their 

tests into the development and evaluation of analytical models capable of predicting roof 

system stiffness and load capacity.  In both studies, all of the nine-truss assemblies had nine 

identical and symmetric trusses, and no gable end trusses.  Therefore, the results of both 

studies showed that the experimental tests of nine-truss assemblies were not directly 

applicable to other or more complex truss assemblies.  

Percival and Comus (1980) investigated the load distribution in a full-scale hip-roof 

system.  The load tests showed that the hip girder in a terminal hip system carried much 

lower loads than generally assumed in the design of the girders.  The folded plate action of 

the sheathing and three-dimensional interaction of the framing members were the primary 

reasons for the reduced loads.  More recently, Waltz (2002) described a series of three-

dimensional finite element models used to define load paths and behavior of a hip roof under 

uniform vertical loads.  The model results were confirmed using test data from full-scale hip 

roof assembly tests.  This showed that ‘many of the load paths utilized members and 

connections that were not always considered to share the burden.’  It was further concluded 
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that ‘much of the disparity between historical performance and a component-based, two-

dimensional analysis can be attributed to the three-dimensional behavior of the roof that is 

not considered in the simplifying assumptions’ (Waltz, 2002).   

 

2.3.2   FE Analysis of Roof Systems in Residential Houses 

As detailed in Sections 1.3 and 3.2, the research presented in this report focuses on a 

test structure that included a heavily instrumented residential hip roof.  Since reconciliation 

of the data from the field can largely be realized using a finite element model, this section 

discusses previous finite element modeling schemes used to produce a theoretical 

representation of the roof systems. 

Li et al. (1998) developed a finite element model for metal-plate-connected Fink 

trusses (see Figure 2.3) and truss systems (see Figure 2.4) comprised of nine Fink trusses.  

The semi-rigid truss and nine-truss roof system finite element models were verified by 

comparing the predicted vertical deflection, truss member internal forces, truss strength, and 

load-sharing of four nine-truss roof systems with the experimental results.  Li et al. (1998) 

used the modulus of elasticity determined by Gerhards (1983) to determine truss strength.  

Also, the load-sharing was found by dividing the sum of the vertical reactions for each truss 

by the total applied load.   

In Li et al.’s (1998) finite element model, beam elements were used to represent the 

wood trusses and sheathing members, while spring elements modeled the heel joints and 

bottom-chord-tension-splice joints.  The spring elements had no physical dimensions and 

were used to represent semi-rigid behavior at the ends of wood truss members connected by 
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metal plates, which were modeled by rigid links.  Figure 2.3 shows the semi-rigid model for 

a metal-plate-connected, Fink roof truss with a 3:12 slope. 

 

 

Figure 2.3.  Semi-rigid model used for a Fink truss by Li et al. (1998) 

 

 

 

Figure 2.4.  Nine-truss roof system finite element model by Li et al. (1998) 
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 The nine-truss roof system is shown in Figure 2.4.  Li et al. (1998) accounted for the 

partial composite action between the plywood sheathing and top chord members by 

increasing the bending stiffness of the truss top chord members.  Kuenzi and Wilkinson 

(1971) developed an equation relating the deflections of a partially composite beam with that 

of a completely composite beam.  From here, Li et al. (1998) rewrote Kuenzi and 

Wilkinson’s (1971) equation to determine an effective stiffness for the truss top chord 

members.  The plywood sheathing shown in Figure 2.4 was modeled using beam elements 

connected to the top chord member of each truss in the assembly.  Not only does the plywood 

sheathing contribute to an increase in the stiffness of truss top chord members due to partial 

composite action, but it also functions as a distributor beam to transfer the load from loaded 

or stiffer trusses to unloaded or more limber trusses.  The gaps in the plywood sheathing 

were taken into account by discontinuing (using a pin joint) those sheathing beams at the 

trusses that approximately corresponded to the gap locations.   

When more than two truss members are connected through a metal-plate-connection 

at a truss joint, the centerlines of the members usually do not intersect at one point.  This 

joint eccentricity, which occurred in the heel joints, was included in the model proposed by 

Li et al. (1998) by offsetting the intersection point between the top chord and bottom chord 

members by an appropriate distance along the bottom chord from the intersection point 

between the centerline of the truss bearing plate and truss bottom chord.  This was 

accomplished by adopting one node for each intersection point at the heel connection (see 

Figure 2.3).  Joint eccentricities were ignored when the nodes for the beam elements met at a 

common node.  Joint eccentricities occurred at web joints and ridge joints in the pitched Fink 

trusses, but they were not modeled to maintain simplicity in the model.  The supports beneath 
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each truss were modeled as a pinned connection at one end and a roller connection at the 

other end.       

Cramer and Wolfe (1989) developed a 3D frame analysis program (ROOFSYS) to 

model a roof system of trusses connected by plywood sheathing.  The plywood sheathing on 

each side of a pitched roof system was represented by a single continuous beam having 

bending stiffness about two axes to account for the wood’s anisotropic properties.  Nail slip 

between the sheathing beam and the truss top chords was assumed to have a negligible effect 

on system performance, and was consequently ignored.  The T-beam effect of the attached 

sheathing or composite action was accounted for by using the bending stiffness equation 

developed for the deflection of a simply supported, partially composite T-beam by Kuenzi 

and Wilkinson (1971).  Results from Cramer and Wolfe (1989) showed that a loaded truss 

carried approximately 50% of the load directly applied to it, which indicates significant 

distribution of load occurring in the roof system.   

The most comprehensive analytical model of load sharing and composite action is 

referred to as NARSYS (nonlinear analysis of roof systems), and was developed by Cramer 

et al. (1993) and Mtenga et al. (1995).  The study’s results showed that the conventional 

design procedure (CDP) of repetitive-use members in a roof assembly was conservative.  

CDP refers to a truss assembly analyzed and designed on a single-truss basis, which assumes 

that each truss in the assembly carries loads based on its tributary area.  The study also 

indicated that the roof slope and other truss characteristics could cause significant changes in 

the system effects.   

Since trusses have been traditionally analyzed and designed on a single-truss basis, 

which assumes that each truss in the assembly carries loads based on its tributary area, the 
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approach does not take into account all system effects encountered in realistic assemblies.  

This conventional design procedure, in fact, may or may not be conservative in actual truss 

assemblies (Gupta, 2005).  Although finite element modeling of the whole structure behavior 

can provide a more accurate estimation of the structural response, over the full duration of 

the defined loading scenario, models can be insufficient at predicting localized behaviors 

such as plate buckling on truss displacement being localized near the buckled plate, 

connection failure due to the need to refine the element type and mesh density to adequately 

identify localized behaviors (Bailey, 2006 and Stahl et al., 1996).  For details of the finite 

element model formulation used in this report, the reader is referred to Chapter 5:  Finite 

Element Modeling of the Roof Structure. 

 

2.4   Representation of Hurricane Wind Loads Used in Design 

 Hurricane wind speeds have been measured and historically compared using many 

different methods through the years of design by engineers.  One of the most common 

approaches to estimating wind loads due to hurricanes on residential structures is given by 

the ASCE 7 Standard.  However, this Standard is only a guide for the minimum design winds 

loads on a particular structure with 50- and 100-year return period peak gust wind speeds for 

hurricane wind speeds along the coast (ASCE 7, 2003).  This means that this Standard is 

shown for wind speeds that should statistically peak once at these design wind speeds for 

every 50 or 100 years, which depends on the area being designed and are similar to Vickery 

and Twisdale (1995) and Georgiou (1985) design methodology for hurricane wind speeds.  

Revisions are made to this Standard once every three years to account for advancements 

made through recent research.  For more details about the ASCE 7 Standard, the reader is 



www.manaraa.com

 21

referred to Chapter 4: Distribution of Wind Pressure on the Hip Roof in Accordance with the 

ASCE 7-02 Standard . 

 Kasal et al. (2004) produced a FE model of the LFB using Paevere et al. (2003) test 

house.  The lateral load distribution on the structure was the main focus of this study, using 

eight different methods to predict the best distribution of design wind forces to the walls of 

the house for a moderately hurricane prone environment.  The wind load was calculated 

assuming a 120-mph zone with an exposure B, which is equivalent to a suburban exposure 

condition based on ASCE 7-98 (ASCE 7, 1999).  The eight methods for analysis are the 

tributary area method, continuous and simple beam methods, total shear method, relative 

stiffness method (with and without torsion), rigid beam on elastic foundation method, rigid 

beam on inelastic foundation method, plate method, and a three-dimensional finite element 

model.  Figure 2.5 depicts the eight methods used for calculating the reaction forces due to 

the lateral wind force distributions.  In Kasal et al.’s (2004) research, the first seven methods 

aforementioned were described and compared to the three-dimensional finite element model 

and with the results of experiments on a full-scale L-shaped woodframe test house by 

Paevere et al. (2003).  The results showed that the variation among the calculated reaction 

forces using the different methods was quite large, which was determined to be 

understandable due to the methods covering a range of complexity and the fact that the 

methods were each based on different assumptions about the behavior of the tested house.  

The plate model produced the most accurate results to the finite element model.  However, 

the eight methods assumed a more rigid diaphragm and allowed for better control of the 

degree of flexibility of the structure.  Paevere et al. (2003) used the same assumption to find 
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a similar conclusion to Kasal et al. (2004).  This indicated that the roof and ceiling diaphragm 

for the house had some degree of flexibility, but was effectively rigid compared to the walls.     

 

Figure 2.5.  Description of different load distribution methods [(a) to (h) in plan view] by 
Kasal et al. (2004) 

 
 
 Although Kasal et al.’s (2004) analytical methods were useful for evaluating lateral 

loads on a particular structure, the FE model produced for the roof system (see Chapter 5) 

was used for distributing the lateral wind forces induced by Hurricane Katrina in this 

research.  The wind distribution used for this study was calculated using the ASCE 7-02 
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Standard.  The Standard was used as it is used readily by design engineers, and is utilized in 

many design codes today (see Chapter 4). 

 After reviewing the literature, there is a need for evaluating a test structure under a 

severe loading such as a hurricane event using finite element methods because not many 

finite element models were studied for wind loading effects.  Also, as Section 2.1 pointed 

out, there is a need for studying much higher wind loading on a residential structure’s 

performance because the peak wind speed from Hurricane Bonnie was only 60 mph in Jones 

and Porterfield’s (1999) research. 
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CHAPTER 3.  DETAILS OF THE TEST STRUCTURE AND 

INSTRUMENTATION SCHEME 

 

3.1   Test Structure 

As previously noted, a one-story timber house was constructed in 2001 by researchers 

from the Forest Products Laboratory (FPL) to evaluate the house’s performance under real 

hurricane loads.  In addition this structure functions as an office building with an all-wood 

safe room, as referred to in FEMA Publication 320 (1998).  This test house is visited daily by 

the National Park Service (FPL News Release, 2006).  The location for this structure was 

chosen to be Pensacola, Florida, because this location along with Miami, Florida, were 

recognized as two locations that have historically experienced most frequent hurricane 

activities.  Pensacola is a city off the southwestern coast of Florida in Escambia County, and 

the global positioning system (GPS) coordinates at the east end wall of the test house are 

N30o 21’ 59.13’’ latitude and W87o 8’ 15.80’’ longitude.  Figure 3.1 shows the location of 

the test house. 

The test house did not have any topographic features around it that may have caused a 

discrepancy in the wind data collected for this field investigation (see Figure 3.11).  Certain 

topographic features of concern in wind design may include, but are not limited to: canyons, 

hills, valleys, escarpments, high-rise buildings, and other large structures nearby.  Also, the 

FPL group reported that test house was in a live oak reservation, and the forest was trimmed 

extensively by Hurricanes Ivan and Dennis (FPL, 2006).  Figure 3.1 shows the location of the 

test house. 
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Approximate test 
house location 

Live oak reservation 

Figure 3.1.  Test house location in Pensacola, Florida (FPL, 2006) 

 

The test structure, which has a floor area of 48 ft x 32 ft, includes a hip roof as shown 

in Figure 3.2.  The wall studs, which are 2x6’s, are 10 feet high spaced at 2 ft. on center.  The 

dimension 2x6 represents the cross sectional area of the lumber used in the construction of 

the test structure.  Worthy to note that the 2x6 is not actually a 2-in. x 6-in. wood member, 

but is a 1 ½-in. x 5 ½-in. member.  A 2x6 is common sizing for lumber with a ½-in. shorter 

linear dimension for both width and depth.  This report will refer to lumber with common 

sizing. 
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Figure 3.2.  Test structure with hip roof (FPL, 2006) 

 

The perimeter walls of the house are secured to the foundation using 5/8-in. diameter 

threaded rods that run from the top of the wall to the foundation beneath the walls.  These 

rods are shown in the plan view of Figure 3.3.  As seen in Figure 3.3, the threaded rods are 

located approximately every 4 ft between the wall studs in the exterior walls.  These threaded 

rods replace the metal hurricane straps or clips that are usually utilized in construction 

located in hurricane prone regions.  The common practice of toenailing the trusses or rafters 

to the wall is often not sufficient to hold a roof in place under high winds (Flager Emergency, 

2006).  Because the threaded rods do not pass up into the hip roof, the hip roof has the 

potential to lift off the frame of the test structure when subjected to high wind loads.  

Motivated by the frequent observation of hurricane damage to roofs in residential structures 

as reported by Ayscue (1996), these construction details were deliberately chosen such that 

48 ft

32 ft
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the field evaluation could be concentrated to the hip roof of the test structure while 

minimizing the deformation and damage to the perimeter walls.   

Since the threaded rods are connected to the foundation of the test structure, the 

combined wall foundation unit of the test structure represents a rigid system.  Also, since 

there are no hurricane straps or clips, nor were the trusses toenailed to remain in place, the 

connection from the roof to the walls represents a flexible connection.  Therefore, the test 

structure is classified as a semi-rigid structure. 

Recall that the primary objective of the study presented herein was to analyze the test 

structure, particularly the hip roof under the recorded wind condition.  Particular attention 

was given to the hip roof portion and how its elements were connected together.  Figure 3.4 

shows a schematic for the test structure without the hip roof sheathing.  The roofing 

elements, which are the rafters and trusses, indicate the orientation of the rafter/truss system.  

It is noted that the voids of the wood rafter/truss system were not taken out in Figure 3.4, 

whereas the trusses of the roof in the test structure has voids as subsequently shown.  Also, 

for simplicity, the openings such as doors and windows are omitted in Figure 3.4. 
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Figure 3.3.  Plan view of test structure with treaded rods (FPL, 2006) 
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Figure 3.4. Test structure without hip roof sheathing (FPL, 2006) 

 

3.2   Test Roof 

Figure 3.5 depicts a plan view of the hip roof with ridgelines shown.  The wall line is 

indicated by the double line and is located 2 ft. in from the hip roof edge.  The overall 

dimensions of the hip roof, which has 1:4 pitch on every side, measures 32 ft. x 48 ft., with a 

2 ft. overhang from the wall edge.  The wood trusses and rafters are placed on the wall at 

two-foot intervals with the first one located at one foot away from the corners.      
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Figure 3.5.  Plan view of hip roof (J. M. Harold Construction, 2006) 

 

As identified in Figure 3.5, all wood trusses are designated as A1, A2, A3, A4, A5, or 

A6.  The trusses have an overall span of 32 ft. and run in the north/south direction.  Wood 

truss A1 is a two-ply wood truss, meaning that two identical wood trusses were nailed back-

to-back to form truss A1.  The nailing schedule is included in Appendix A.  Wood trusses A2, 

A3, A4, A5, and A6 are one-ply wood trusses.  These trusses were made with 2-in. x 4-in. 

wood members except for the stiffeners in each truss, which were 2-in. x 6-in. lumber.  These 

stiffeners were used primarily to better distribute the load from the top chord down to 
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supports on top of the walls.  Figure 3.6 shows the designations of the truss members and the 

stiffeners for truss A1.  The roof system was designed for 30-psf live load and 7-psf dead 

load applied to the top chord, and 10-psf dead load applied to the bottom chord (J.M. Harold 

Construction, 2006).  These loads were chosen by the truss manufacturer given the materials 

utilized in the test roof.  For more details of the wood trusses used in the roof, refer to 

Appendix A.  In the following paragraphs, a summary of how the elements of the roof 

structure were connected together to ensure satisfactory load transfer is provided.   

 

 
Figure 3.6.  Member designations for truss A1 (not to scale) 

 

The rafters are designated as CJ1, CJ3, CJ5, EJ7, or HJ10.  The designation CJ 

represents the corner jack while the attached number defines the length of the bottom chord.  

The designation EJ represents the end jack, and the attached number again defines the 

bottom chord length.  This number also indicates the distance of the end jack from a hip roof 

corner.  For example, the EJ7’s refers to an end jack with a bottom chord length of 7 ft. that 

is located 7 ft. in from a hip roof corner.  The HJ represents the hip jacks.  These elements 

span in the diagonal direction and frame into truss A1 (see Figure 3.5).  Rafters CJ1, CJ3, 

CJ5, and the first EJ7 are framed into the HJ10’s.  Worthy to mention that CJ1 rafter is not 
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included in Appendix A because the details were not included by the manufacturer, J.M. 

Harold Construction.  This investigative report assumed rafter CJ1 to have similar properties 

to the other rafters in the truss system.  The wood rafters are all one-ply rafters.  The rafters 

are made with 2-in. x 4-in. wood members except for the stiffeners in each rafter end, which 

were constructed with 2-in. x 6-in. lumber.  For more detailed sketches of the rafters, the 

reader is referred to Appendix A.  Unfortunately, no nailing schedule for the rafters was 

available.    

The roofing components in the test structure consist of asphaltic shingles, roofing felt, 

plywood, rafters/trusses, and gypsum board (see Figure 3.7).  The roof sheathing is 

comprised of asphaltic shingles, roofing felt, and plywood.  Furthermore, a ½-in. thick 

gypsum board is used as ceiling, which is attached by gypsum nails to the bottom chord of 

the wood trusses and rafters. 

Member properties of the trusses/rafters are typically that of southern pine #2 grade 

and are included in Appendix A.  The properties of asphaltic shingles, roofing felt, plywood, 

and gypsum board properties are assumed using the ASCE 7-02 Standard (2003).  These 

properties are further discussed in Chapter 5: Finite Element Modeling of the Roof Structure. 
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Figure 3.7.  Roofing components and load cell location 

 

3.3   Instrumentation 
 

The measurement devices for recording the wind load effects on the roof of the test 

structure are load and pressure cells.  Figure 3.8 shows a schematic of the load cell 

distributions, which are represented by the lightly colored circles, along the roof/wall line, 

represented as hidden line.  The load cells were listed by the direction, followed by the 
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number of the load cell and an L representing the load cell.  For example, the 11th north load 

cell is represented by N11L.  There were 68 load cells instrumented to measure the vertical 

reactions at the wall/roof line at a given wind speed and time.  The only place a load cell 

wasn’t located is underneath all CJ3 rafters, which are positioned 3 ft. in from the hip roof 

corner (see Figure 3.5).  There is no load cell at this location as there should not be a reaction 

measured at this location due to the fact that the rafter does not sit on the wall support.  As 

mentioned earlier, a wooden block is removed at this location.   

 

 
Figure 3.8.  Plan view of hip roof showing the locations of load cells and pressure cells (FPL, 

2006) 
 

The load cells are located on the top of the walls below the rafter and the truss bottom 

chord as shown in Figures 3.9 and 3.10.  By completely separating the roof from the walls, 

the load cells record the vertical loads transmitted from the roof to the walls.  It is worthy to 
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mention here that the load cells are anchored to the roof system by an inverted L-brackets on 

both sides of the double top plates to take the horizontal wind forces.  The slots in the L-

brackets allow for the vertical movement of the roof system.  Figure 3.9 shows mockup of 

the positioning of the load cells between the roof and the wall used to measure the reactions 

under each rafter/truss. 

 

 
Figure 3.9.   Illustration of load cells placed between the roof and wall under each 

rafter/truss [FPL, 2006]   

Rafter/Truss 

Note it can freely 
move in the 
vertical direction  

Load Cell

Double Top 
Plate of the 
Wall 

 

The load cells were placed in the test structure by first zeroing out each load cell.  The 

test roof was then jacked up at each wall support.  Upon removing a temporary small wood 

block under the rafter/truss, each individual load cell was engaged in the test structure.   The 

load cells were Sensotec ™ load cells and had the capacity to measure up to 3,000 lbs. in 

compression underneath truss A1 and the rest of the load cells had the capacity to measure up 

to 2,000 lbs. in compression (FPL, 2006).       
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Figure 3.8 also shows the pressure cells located on the outside of the roof.  These 

pressure cells are represented with darker colored circles, and are listed as the coordinate 

direction followed by the number of the pressure cell, followed by a P representing the 

pressure cell.  For example the 11th north pressure cell is represented by N11P.  There are 76 

pressure cells to measure the pressure at a given wind speed and time.         

The pressure cells were distributed on the top surface of the roof to measure the wind 

pressure in psf (lbs/ft2) in a direction normal to the surface of the hip roof.  Figure 3.10 shows 

a photo of the pressure ports on the hip roof.  The pressure cells are located directly 

underneath the pressure ports.  These recording devices are further discussed in the following 

section.  Also, refer to Figure 3.8 for the actual locations of load cells and pressure cells on 

the test structure. 

 

 

Figure 3.10.  A view showing the pressure ports on the hip roof (FPL, 2006) 
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 The pressure cells were Sentra ™ differential pressure transducers and were attached 

to the inside of the roof by 1¼-in. diameter holes drilled through the roof sheathing and 

shingles.  Dishwasher air gaps were fitted and sealed in the roof holes.  The outside tube or 

port was attached to the pressure transducers with the reference to the inside of the roof.  The 

transducers were ± 5-in. H2O column (FPL, 2006).  These pressure cells measured the 

relative pressure on the test roof, which was the outside pressure minus the inside pressure.   

 Figures 3.11 and 3.12 below show the anemometer to capture the wind speed and 

direction of the hurricane wind forces during Hurricane Katrina data collection.  The wind 

monitor was a R.M. Young model 05103VP ™ with a propeller/vane unit (FPL, 2006), and 

was placed 25 ft. above the ground. 
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Figure 3.11.  A close view of anemometer (FPL, 2006) 

 
 

 
Figure 3.12.  Proximity of anemometer with respect to the test structure (FPL, 2006) 
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3.4   Wind Speed Data  

The instrumented test house collected various data sets from the following hurricanes:  

Ivan (September 16, 2004), Arlene (June 13, 2005), Dennis (July 10, 2005), Katrina (August 

29, 2005), and Wilma (October 19, 2005) (FPL, 2006).  However, the study presented herein 

primarily considered only the recorded data from Hurricane Katrina because of the extensive 

wind speed information available for this event.     

Data from the test structure including the anemometer data was collected from the 

FPL group for the test house located in Pensacola, Florida.  The collected data for Hurricane 

Katrina was recorded for every second over nearly a 24-hour duration starting from 4:40:43 

PM on August 28, 2005 to 3:53:57 PM on August 29, 2005.  The peak wind speed of 56.2 

mph occurred at 1:14:6.43 PM on August 29, 2005.  The wind speed data included the time 

at wind speed in hundredths of a second since midnight, wind speed in miles per hour, 

relative humidity, degree of wind attacking house, and coordinate direction of wind attacking 

house.  

 
 
3.5 Sample of Recorded Wind Speed Data 
 

Table 3.1 shows a sample of the recorded wind speed data that included minimum 

wind speed, maximum wind speed, and the average wind speed for each coordinate direction 

measured.  In this study, three different arithmetic averaged wind speeds were determined.  

In each case, the arithmetic average over the specified time intervals was found.  The average 

wind speed for the full 24-hour duration was found by adding the arithmetic average of the 

first 12-hours plus the average of the second 12-hours and dividing by two.  As listed in 

Table 3.1, 16 coordinate directions used to identify the dominant wind direction.   
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Table 3.1.  Wind speed data arranged by coordinate directions 

    Average Wind Speeds (MPH) Wind Speeds (MPH)

Wind 
Direction 

Degree 
(measured) 

4:00 PM on 
August 28, 2005 
to 4:00 AM on 

August 29, 2005

4:00 PM on 
August 29, 2005 
to 4:00 PM on 

August 29, 2005

4:00PM on 
August 28, 2005 
to 4:00 PM on 

August 29, 2005 Minimum Maximum
N  5-11 4.4555 4.7667 4.6111 1.33 7.40 

NNE  12-34 6.2891 5.1976 5.7433 0.33 14.73 
NE  34-56 8.5783 7.4007 7.9895 0.20 24.00 

ENE  56-78 10.9889 10.0855 10.5372 0.27 29.47 
E   79-101  13.8179 12.3104 13.0641 0.27 40.33 

ESE  101-123 17.0705 14.5827 15.8266 0.40 56.20 
SE  124-146 18.8058 20.8887 19.8473 0.33 51.73 

SSE  147-168 16.0765 23.2204 19.6485 0.13 56.00 
S  170-190 10.0561 22.5573 16.3067 1.07 54.27 

SSW  191-213 5.5594 16.3293 10.9443 0.33 40.27 
SW  214-234 3.6343 8.2513 5.9447 0.4 20.87 

WSW 239-258 2.1333 4.4583 3.2959 1.00 14.80 
W  261-278 2.9111 2.25 2.5805 0.47 6.13 

WNW  286-298 3.3333 3.0667 3.2 1.33 4.80 
NW  311-326 2.9667 3.1333 3.05 1.40 4.20 

NNW  327-345 0.0000  2.4067 2.4067 0.60 4.00 
       
* Standard time shown above was converted from hundredths of seconds since midnight in the data set
(e.g., 7,560,016 hsec converts to 9:00:16 PM) 

 

To demonstrate the strong wind direction on the test structure, two wind-rose 

diagrams were created using the data from Table 3.1.  Figures 3.13 and 3.14 show the 

maximum wind speed and the average wind speed over a 24-hour duration for each 

coordinate direction, respectively.  The tick marks on each axis represent a unit of 10 mph.  

A wind-rose diagram was not created for the minimum wind speed since low wind speeds in 

all directions were within 2 mph of each other.   
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Figure 3.13.  Wind-Rose diagram for maximum wind speed data collected during 24-hour 

duration of Hurricane Katrina 
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Figure 3.14.  Wind-Rose diagram for average wind speed data collected during 24-hour 

duration of Hurricane Katrina 
 

From Table 3.1 and Figures 3.13 and 3.14, the results indicate that the east-

southeastern (ESE) direction had the maximum wind speed of approximately 56.2 mph.  A 

peak wind speed of 50 knots, which is 57.5 mph, was recorded by WEAR-TV in Pensacola, 

Florida (NWS Forecast Office, 2006) on August 29, 2005.    The peak wind speeds recorded 

by both the FPL data and the NWS Forecast Office corresponded well to one another with a 

2.33% error.  The south-southeastern (SSE) direction had the minimum wind speed of 0.13 

mph.  Therefore, the east-southeastern direction was chosen as the major direction for 



www.manaraa.com

 43

investigating the response of the roof structure.  In addition, the maximum wind speed was 

useful in that it provided a comparison to the ASCE 7-02 Standard approach for the observed 

wind speed.  The recorded data associated with the minimum wind speed was utilized to 

verify gravity load analysis of the roof structure.  Additional information obtained using the 

minimum wind speed data is the extra weight of the roof resulting from the build-up of 

moisture during a hurricane event.  This was investigated in Section 6.1 of the report.  

Figure 3.15 shows the path of the eye of Hurricane Katrina as it made landfall in the 

southeastern United States.  Even though the eye of Hurricane Katrina did not come close to 

Pensacola, Florida, wind forces were still measured. 

 

Figure 3.15.  Path of eye of Hurricane Katrina beginning in the Atlantic Ocean and ending in 
the eastern United States (Hurricane Katrina Storm Path, 2006) 
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For more in depth analysis of the field results, the reader is referred to Chapter 6: 

Finite Element Analysis Results and Modeling Comparisons with Field Data and Load 

Specified in Design Codes.  The intention of this chapter was to introduce the test structure, 

instrumentation, and gather a sample of the wind speeds and direction associated with the 

hurricane winds produced during Hurricane Katrina data collection. 
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CHAPTER 4.  DISTRIBUTION OF WIND PRESSURE ON THE 

HIP ROOF IN ACCORDANCE WITH THE 

ASCE 7-02 STANDARD 

 

A widely used approach for wind design in current practice is that established by the 

ASCE 7 Standard (ASCE 7, 2003), which defines various minimum design loads for 

buildings and other structures for the particular structures location.  For a given structure, the 

minimum positive and negative wind pressures needed for determining wind loads can be 

found using this Standard and are represented by pressures and suctions, respectively.  This 

chapter provides the basis for, and determination of the minimum design wind loads for the 

entire test structure as well as the components and cladding using the ASCE 7-02 Standard.   

The newest building codes such as the International Building Code (IBC), National 

Fire Protection Association (NFPA), and Florida Building Code reference the wind 

provisions of the ASCE 7 Standard – Minimum Design Loads for Buildings and Other 

Structures (ASCE, 2006).  The ASCE 7 Standard calculates the wind effect that a particular 

structure experiences given its location in the continental United States.  Although the ASCE 

7 Standard is designated for a 50-year or 100-year return period, the wind loading on the 

structure in this study, as per the ASCE 7-02 Standard, was also found given the peak wind 

speed measured during Hurricane Katrina.  This chapter will discuss how the wind pressures 

were determined for this test structure and its components.  In addition, the ASCE 7-02 

Standard wind pressure distributions will be compared in this report with the field data and 

the FE model in Section 6.4.   
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4.1 Minimum Design Wind Loading Conditions 

The two minimum design wind loading conditions used by the ASCE 7-02 Standard 

are the Main Wind Force-Resisting System (MWFRS) and the Components and Cladding 

(C&C).  The minimum design wind loading for the entire test structure was calculated using 

the MWFRS, and the minimum design wind loading for certain components of the test roof 

was calculated using the C&C. 

The MWFRS is an assemblage of structural elements assigned to provide support and 

stability for the overall structure, and to transfer wind loads to the ground.  Structural 

elements such as shear walls, roof trusses, and roof diaphragms are all part of the MWFRS 

when they assist in transferring overall wind loads.  Components and cladding refers to 

elements of the building envelope that do not qualify as part of the main wind force-resisting 

system.  Components receive wind loads directly or from cladding, and transfer the load to 

the MWFRS.  The cladding receives the wind loads directly.  Examples of components 

include: fasteners, purlins, girts, studs, roof decking, and roof trusses.  Components may be 

part of the MWFRS when they act as shear walls or roof diaphragms, but they may also be 

loaded individually.   

A direct comparison will be given between the design wind pressures found using the 

ASCE 7-02 Standard MWFRS and C&C design for the test roof (see Section 6.3.1).  The 

design wind loads for the entire test structure using the MWFRS approach were applied to 

the FE model produced (see Chapter 5) and compared with the reactions and pressures 

measured in the field (see Section 6.3.2).  Also, the design wind loads were applied to the FE 

model at the pressures produced during the peak wind speed of 50.33 mph (as established in 

Section 4.3.1) and the wind speed for the location of the test structure of 120.34 mph (as 
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established in Section 4.3.1) (see Section 6.3.3).  The design wind loads for the studs in the 

walls and the rafters/trusses in the hip roof were determined using the C&C approach.  The 

design wind pressures found using the C&C provided for a direct comparison to the field 

data to determine if the pressures recorded in the field correlated well with the ASCE 7-02 

Standard pressures calculated (see Section 6.3.4).  The design wind pressures found using the 

C&C approach, in theory, should produce a more accurate representation of the design wind 

pressures and reactions measured in the field because the field data measured wind pressures 

instaneously during Hurricane Katrina.  However, these design wind pressures were not 

applied to the FE model because localized pressures occurred at different times and locations 

on the test structure.  Other components, such as the plywood sheathing for the roof and 

walls were not analyzed for wind pressure distributions because the member properties and 

material properties weren’t known.   

 

4.2   Wind Load Methods for Both MWFRS and C&C  

 There are three methods available in ASCE 7-02 Standard for computing wind loads 

on structures:  Method 1 (simplified procedure), Method 2 (analytical procedure), and 

Method 3 (wind-tunnel procedure).  Method 1 is used when the designer can select wind 

pressures directly from a chart without any calculation, and when the building meets all the 

requirements for application.    There are nine requirements in accordance with the ASCE 7-

02 Standard for Method 1 application for the MWFRS, which include:  

• The building is simple diaphragm building, 

• The building is a low-rise building,  

• The building is enclosed and conforms to the wind-borne debris provisions, 
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• The building is a regular shaped building or structure, 

• The building is not classified as a flexible building, 

• The building does not have response characteristics making it subject to across-wind 

loading, vortex shedding, instability due to galloping or flutter; and does not have a 

site location for which channeling effects or buffeting in the wake of upwind 

obstructions warrant special consideration, 

• The building has no expansion joints or separations, 

• The building is not subjected to topographic effects, and  

• The building has an approximately symmetrical cross section in each direction with 

either a flat roof, or a gable or hip roof with θ ≤ 45 degrees. 

This structure meets all of the above qualifications for the MWFRS to be used for 

wind design, but was not be used because Method 2 was seen to be more accurate due to the 

various pressure coefficients and interpolation used in the design charts.  However, Method 1 

will was plotted for case 1 in Figure 4.11. 

There are six requirements for Method 1 to be used for Components and Cladding, 

which include:  

• The mean roof height is h ≤  60 ft., 

• The building is enclosed and conforms to the wind-borne debris provisions, 

• The building is a regular shaped building or structure, 

• The building does not have response characteristics making it subject to across-wind 

loading, vortex shedding, instability due to galloping or flutter; and does not have a 
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site location for which channeling effects or buffeting in the wake of upwind 

obstructions warrant special consideration, 

• The building is not subject to the topographic effects, and  

• The building has either a flat roof, or a gable roof with θ ≤ 45 degrees, or a hip roof 

with θ ≤ 27 degrees. 

Once again, this structure meets all of the above qualifications for the C&C to be used 

for wind design, but was not be used because Method 2 was seen to be more accurate due to 

the various pressure coefficients and interpolation used in the design charts.  However, 

Method 1 was plotted to show the difference in the wind pressure distributions from Method 

2 for the studs in the walls in Figures 4.16 and 4.17 and the rafters/trusses in the test roof in 

Figures 4.22 and 4.23. 

Method 2 and Method 3 are relatively more complex procedures that are expected to 

lead to a more accurate representation of the wind loads because this method accounts for all 

heights and flexibilities in a particular structure.  To be considered for design this method 

must meet the following two conditions as per the ASCE 7-02 Standard: 1) the building or 

other structure is a regular shaped building or structure, and 2) the building or other structure 

does not have response characteristics making it subject to across-wind loading, vortex 

shedding, instability due to galloping or flutter; or does not have a site location for which 

channeling effects or buffeting in the wake of upwind obstructions warrant special 

consideration.   

Method 2 is referred to as the Analytical Procedure in the ASCE 7-02 Standard.  This 

procedure involves the determination of wind directionality and a velocity pressure, the 

selection or determination of an appropriate gust effect factor, the selection of appropriate 
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pressure or force coefficients, the required level of structural reliability, the effects of 

differing wind exposures, the speed-up effects of certain topographic features such as hills 

and escarpments, and the size and geometry of the building or other structure under 

consideration.  It also requires identifying the structure as rigid or flexible, and produces 

results that generally envelope the most critical load conditions for the design of main wind 

force-resisting systems as well as components and cladding.   

Method 3 is referred to as the Wind-Tunnel Procedure.  This method is used to 

determine wind loads more accurately because it can reduce the conservatism due to 

enveloping of the wind loads in Method 1 and Method 2.  Method 3 is only used when the 

structure satisfies one or more of the following conditions: 1) it has a shape which differs 

significantly from the uniform rectangular prism, 2) it is flexible with natural frequencies 

normally below 1 Hz, 3) it is subject to buffeting by the wake of upwind buildings or other 

structures, and 4) it is subject to accelerated flow caused by channeling or local topographic 

features.    

Given that the test structure is of uniform, rectangular shape and is located in a 

hurricane prone region, Method 2 was used to calculate the minimum design wind loads on 

the entire test structure as well as individual studs in the walls and individual rafters/trusses 

in the hip roof.  Since the test structure was estimated to be a semi-rigid structure (see 

Section 3.1), it was assumed to be a rigid structure for the ASCE 7-02 Standard wind design.  

Also, the test structure was shown to have no topographic effects near or at the test structure 

location (see Section 3.1). 
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4.3   Wind Load for Entire Test Structure Using Method 2 

 It was necessary to study the wind effect on the entire test structure to help 

understand the critical sections for wind loading.  The wind load for the entire test structure 

provided the minimum design pressures that the test structure is expected to see based on its 

return period (see Section 2.4).  However, it is important to note that these design pressures 

are representative of average values for the entire test structure, and that actual wind 

pressures at localized areas would be higher.  In accordance with the ASCE 7-02 Standard, 

the wind load for the entire test structure was distributed normal to the walls, roof sheathing, 

and roof overhang.  Therefore, no internal loading would attack the structure, but would 

factor into the wind load design as per the ASCE 7-02 Standard wind design (see Eq. 4.3).   

 As previously mentioned, the MWFRS was used for the wind load on the entire test 

structure including the roof.  The MWFRS procedure involves the determination of wind 

directionality and a velocity pressure, the selection of an appropriate gust effect factor, and 

the selection of appropriate pressure or force coefficients.  This procedure accounts for the 

required level of structural reliability, the effects of differing wind exposures, the speed-up 

effects of certain topographic features, and the size and geometry of the building under 

consideration.  As there were no topographic features present around the test structure (see 

Section 3.1), the terrain was considered to be homogeneous, open terrain. 

 

4.3.1   Basic Wind Speed 

 The basic wind speed (V) was used in the determination of the design wind speed on 

the test structure.  This variable factors in the design wind speed equation utilized in Method 

2 (see Eq. 4.2).  In accordance with the ASCE 7-02 Standard, this variable was selected from 
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a graph of the United States by county where the test structure is located.  The basic wind 

speed corresponded to a 3-second gust speed at 33 ft above ground for Exposure Category C, 

which is an open terrain condition as per ASCE 7-02 Standard.   

The basic wind speed for the test structure located in Pensacola, Florida, was 140 

mph.  However, this basic wind speed utilized in the ASCE 7-02 Standard map of the United 

States acted at 33 ft. above the ground surface and was consequently changed to the test 

structure’s mean roof height of 12.5 ft.  This was the average height at which the wind 

attacked the test structure.  Using the Log Law (Simiu and Scanlan, 1996) as defined by Eq. 

4.1 below, the wind speed was converted from 33 ft. above ground to 12.5 ft. above ground: 
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where z1 was 12.5 ft. above ground, z2 was 33 ft. above ground, and z0 was 0.0328 ft. above 

ground.  It is worthy to note that z0 corresponds to the open terrain condition (Simiu and 

Scanlan, 1996).  The resultant wind speed for the basic wind speed at 140 mph converted to 

12.5 ft. above ground was calculated as V = 120.34 mph.  This wind speed was used for 

design wind pressures on the given test structure at the location of the test structure.  Eq. 4.1 

is often used to convert wind speeds from different heights as well as different terrain 

conditions.   

 Since this design report also analyzes the peak wind speed for Hurricane Katrina data, 

the peak wind speed was reduced to the wind speed at the mean roof height of the test 

structure.  The resultant wind speed for the peak wind at 56.2 mph at 25 ft above ground for 
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the anemometer height (see Section 3.3 and Figure 3.12), converted to 12.5 ft. above ground 

for the mean roof height was calculated as V = 50.33 mph.  This resultant wind speed was 

used in both the MWFRS and C&C wind design because Chapter 6 of this design report will 

use these wind pressure distributions for comparison to the field data of Hurricane Katrina. 

 

4.3.2   Building Exposure and Surface Roughness Category 

 The test structure was located in Pensacola, Florida (Escambia County), for which 

surface roughness category C was used for all wind directions.  Surface roughness category 

C was used for open terrain with scattered obstructions having heights generally less than 30 

ft (see Section 3.1).  This category includes flat open country and all water surfaces in 

hurricane-prone regions.  Exposure category C was used in conjunction with surface 

roughness category C as per ASCE 7-02 Standard. 

 

4.3.3  Building Classification 

 The classification for the test structure was rated by the nature of its occupancy.  The 

test structure was a single-story house, located on the Florida coastline.  The test structure 

served as an office building during research site visits and as a safe house during hurricanes 

because of the all-wood safe room in the test structure (see Section 3.1).  In light of these 

facts, the test structure was classified as a category I building as per the ASCE 7-02 Standard.  

Category I buildings refer to buildings that represent a low hazard to human life in the event 

of failure, which includes minor storage facilities. 
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4.3.4   Velocity Pressure 

 The velocity pressure, qz, was the horizontal pressure that attacked the test structure, 

and was to be evaluated at height z above the ground.  As per the ASCE 7-02 Standard, the 

velocity pressure was determined by the following equation: 

 

qz = 0.00256kzkztkdV2I  (psf)                                                       (4.2) 

 

where qz was the velocity pressure exposure coefficient, kzt was the topographic factor, kd 

was the wind directionality factor, V was the velocity pressure, and I was the importance 

factor.  The numerical coefficient 0.00256 is used unless sufficient climatic data are available 

to justify a different value.   

 

4.3.5   Design Wind Pressures 

 Design wind pressures were determined for the building at all heights.  As per the 

ASCE 7-02 Standard, the wind pressure was given by the following equation: 

 

p = qGCp – qi (GCpi)  (psf)                                                       (4.3) 

 

where q = qz for windward walls at height z above the ground, q = qh for leeward walls, side 

walls, and roof at height h, qi = qh for windward walls, side walls, leeward walls, and roof of 

enclosed buildings, G was the gust effect factor, Cp was the external pressure coefficient, and 

(GCpi) was the internal pressure coefficient.  One should note that this structure was 
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considered to be an enclosed building due to the small number of openings along each wall 

(see Figure 3.3).    

 Finding values for the factors used in Eq. 4.3 from the ASCE 7-02 Standard was 

relatively straight forward, with the exception of the external pressure coefficients (Cp) for 

the hip roof.  The external pressure coefficients for the hip roof had to be linearly 

interpolated using the data table to obtain the correct values.  The variables used in this 

process were: 1) values of the angle the roof makes with the horizontal (θ), 2) building height 

divided by wall length parallel with the wind direction (h/L), and 3) wall length parallel with 

the wind direction divided by the wall length perpendicular to the wind direction (L/B).  

Linear interpolation should be carried out only between values of the same sign.  When two 

Cp values are listed in the data table, this indicated that the windward roof slope was 

subjected to either positive or negative pressures.  In this case, the hip roof shall be designed 

for both conditions.     

 The low-rise building pressure equation, which is similar to Eq. 4.3, in the ASCE 7-02 

Standard could also have been applied to the test structure.  However, this was an alternative 

design and was not used for wind load design. 

 

4.3.5.1 MWFRS Design Upwind Exposure Quadrants 

According to the ASCE 7-02 Standard, the test structure must be designed for wind 

load in eight quadrants.  Figure 4.1 identifies these eight quadrants in a plan view of the test 

structure.   
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Figure 4.1.  Wind loading quadrants used for MWFRS design (ASCE 7, 2003) 

 

 The wind loading quadrants above show how the determination of wind loads from 

different directions could have influenced the test structure.  For each of the eight directions, 

upwind exposure was determined for each of two 45o sectors, with one on each side of the 

wind direction axis.   

 According to the ASCE 7-02 Standard, the sector with the exposure giving the highest 

loads was used to define wind loads for that direction.  For example, for winds from the east, 

the highest exposure from sector two or three was used.  Also, for wind coming from 

southeast, the most exposed of sectors three or four was used to determine full x and y 

loading individually.  Then, 75% of these loads were applied in each direction at the same 

time. 

Since the upwind exposure was assumed to be equal for all eight wind loading 

quadrants, the test structure was not evaluated differently for each quadrant.  For the basic 
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wind speed of V = 120.34 mph, the test structure was evaluated from wind from all eight 

quadrants shown in Figure 4.1.  The maximum of the eight wind loading quadrants gave the 

wind design that the test structure could expect to experience within a 50-year or 100-year 

return period.   

Since this report focuses on a comparative analysis to the field data, only wind from 

the east and southeast direction was evaluated, since the test structure recorded the highest 

wind speed at 56.2 mph (50.33 mph when adjusted using Eq. 4.1) in the east-southeastern 

direction.  The maximum of the two wind loading quadrants gave the wind design for the test 

structure when compared to the field data for Hurricane Katrina (see Section 6.4.2).         

 

4.3.5.2 MWFRS Design Wind Load Cases 

 Four design wind load cases were used for the MWFRS for Method 2.  These design 

wind load cases gave different wind pressure distributions across the entire test structure.  

Since the maximum wind speed recorded from Hurricane Katrina was in the east-

southeastern direction, no other wind loading directions were considered for design, as the 

test structure must be designed for the worst case scenario.  The four wind load design cases 

implemented are shown in Figure 4.2.  It is worthy to note that in designing the test structure 

under a basic wind speed of V = 120.34 mph given the test structure’s location, wind must be 

evaluated for all eight wind directions. 
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Figure 4.2.  Design wind load cases for MWFRS (ASCE 7, 2003) 
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• Wind load case 1 was for the full design wind pressure acting normal to the projected 

surface.  This design wind pressure gave the wind pressure distribution for winds 

from the east direction without torsional effects. 

• Wind load Case 2 was for three quarters of the design wind pressure acting normal to 

the projected surface.  This design wind pressure corresponded to the wind pressure 

distribution for the winds from the east direction with torsional effects.  The torsional 

effects were represented by moment per unit height about the vertical axis of the 

building.   

• Wind load Case 3 was for wind loading as defined in wind load Case 1, but  was 

considered to act simultaneously at 75% of the specified value.  This design wind 

pressure gave the wind pressure distribution for the winds from the southeast 

direction without torsional effects. 

• Wind load Case 4 was for wind loading as defined in wind load Case 2, but was 

considered to act simultaneously at 75% of the specified value.  This design wind 

pressure determined the wind pressure distribution for the winds from the southeast 

direction with torsional effects.   

Figures 4.3 through 4.10 represent the design wind pressures calculated for 50.33 

mph wind speeds from the east and southeast direction, which was the same direction to be 

evaluated as the peak wind speeds recorded from Hurricane Katrina.  These figures represent 

the wind pressures for wind load Case 1 with pressure and suction, respectively; wind 

pressures for wind load Case 2 with pressure and suction, respectively; wind pressures for 

wind load Case 3 with pressure and suction, respectively; and wind pressures for wind load 

Case 4 with pressure and suction, respectively.  All wind pressures were applied externally to 
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the test structure.  There are two figures presented for each wind load case to delineate the 

positive and negative internal pressures separately (see Eq. 4.3).  The directional arrows 

included in the figures show the direction of the wind normal to the surface in contact.  Wind 

pressures outward signify suction and wind pressures inward signify pressure.  Also, the 

torsional component (MT) in wind load Cases 2 and 4 was applied per unit height along the 

building.  Therefore, at the mean roof height the torsional component was multiplied by 12.5-

ft.   

 To show the comparison of the wind pressure distribution on the test structure at its 

given location with V = 120.34 mph wind speeds, the pressures and suctions in Figures 4.3 

through 4.10 would need to be multiplied by 5.72.  In addition to winds from the east and 

southeast as shown in Figures 4.3 through 4.10, the design wind pressures would need to be 

calculated for winds from the north, northeast, south, southwest, west, and northwest.  This is 

due to wind attacking the test structure from all eight wind loading quadrants (see Figure 

4.1). 
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Figure 4.3.  Method 2: MWFRS Case 1 for wind direction east at 50.33 mph wind speed with 

internal pressure 0.6494 psf 
 

 
Figure 4.4.  Method 2: MWFRS Case 1 for wind direction east at 50.33 mph wind speed with 

internal suction of –0.6494 psf 
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Figure 4.5.  Method 2: MWFRS Case 2 for wind direction east at 50.33 mph wind speed with 

internal pressure of 0.4871 psf 

 
Figure 4.6.  Method 2: MWFRS Case 2 for wind direction east at 50.33 mph wind speed with 

internal suction of –0.4871 psf 
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Figure 4.7.  Method 2: MWFRS Case 3 for wind direction southeast at 50.33 mph wind 

speed with internal pressure of 0.4871 psf 
 
 
 

 

 
Figure 4.8. Method 2: MWFRS Case 3 for wind direction southeast at 50.33 mph wind 

speed with internal suction of –0.4871 psf 
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Figure 4.9.  Method 2: MWFRS Case 4 for wind direction southeast at 50.33 mph wind 

speed with internal pressure of 0.3656 psf 
 
 
 
 

 

 
Figure 4.10.  Method 2: MWFRS Case 4 for wind direction southeast at 50.33 mph wind 

speed with internal suction of –0.3656 psf 
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As previously mentioned, the worst wind load case controlled the design for the wind 

pressures.   Since the maximum wind speed recorded from Hurricane Katrina was measured 

in the east-southeast direction, only the easterly and southeast wind directions were 

considered.  Therefore, all eight figures listed above must be plotted in the finite element 

model to give the worst wind load case for each individual rafter/truss in the hip roof.  These 

design wind pressures controlled the hip roof design at wind speeds of 50.33 mph, which was 

the maximum recorded (as established in Section 4.3.1) wind speed during Hurricane Katrina 

data collection.  It should be noted that the eight figures listed above were not adjusted for 

the basic wind speed of V = 120.34 mph wind speeds and found for winds from the other six 

wind directions.  Figures 4.3 through 4.10 wind pressures would need to be multiplied by 

5.72 to obtain the wind pressure distributions at V = 120.34 mph. 

 

4.3.5.3 Method 1 Wind Pressure Distributions 

As mentioned in Section 4.2, Method 1 design wind pressures were also plotted to 

compare to Method 2.  However, these design wind pressures could not be adjusted to the 

maximum wind speed of 56.2 mph, or 50.33 mph after adjusting for height (see Section 

4.3.1), because the design charts for Method 1 did not read any less than 85 mph.  Also, the 

design charts for Method 1 wind design are for exposure B at h = 30 ft.   Adjustment was 

done for exposure C at h = 15 ft, which was the smallest height, using the adjustment factor 

λ. 

 Figure 4.11 shows the horizontal and vertical projections for the wind pressure 

distributions at the basic wind speed of V = 120.34 mph.  Since the wind speeds are only 

shown for winds from the east with the southeast corner of the structure seeing the critical 
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loads, there are seven other loading conditions for the basic wind speed of V = 120.34 mph 

that need to be evaluated for design.  Positive pressures represent pressures into the test 

structure and negative pressures represent suctions on the test structure.   It is worthy to note 

that there the test structure is only evaluated by load case 1 because the slope of the hip roof, 

θ, is only 18.435o.   
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Figure 4.11.  Method 1: MWFRS Case 1 for wind from the east at 120.34 mph wind speed 
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4.4   Wind Load for Components and Cladding (C&C) for Method 2 

 Once the wind load for the entire test structure was determined, more detailed 

attention was given to the components and cladding (C&C) for the test structure.  A wind 

design was done for the components and cladding, which were designed for the studs in the 

walls and the wood rafters/trusses in the hip roof.  These were the only two components 

evaluated since both the member properties and the material properties were known.  

 The wind design for components and cladding was done similar to the entire test 

structure, with the exception of the critical dimension of the component and cladding under 

wind load and the effective area in contact.  The effective area in contact depended on the 

selected component.  The critical dimension was represented by a, which was the lesser of 

10% of the least horizontal dimension, or 40% of the building height, but not less than either 

4% of least horizontal dimension or 3 ft (ASCE 7, 2003).  As per the ASCE 7-02 Standard, 

the distance a defined the critical zones for components and cladding.  The effective area in 

contact depended on the studs in the walls and the rafters/trusses for the hip roof, which were 

the components selected for analysis.  The effective area in contact was the larger of the 

tributary area for the component being selected or the component length squared divided by 

three (ASCE 7, 2003).  The effective area in contact limits the external pressure coefficient, 

GCp. 

The wind pressures were found by the following equation: 

 

p = qh[(GCp) – (GCpi)]  (psf)                                    (4.4) 
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where qh was the velocity pressure evaluated at the mean roof height h, (GCp) was the 

external pressure coefficients, and (GCpi) was the internal pressure coefficients.  One should 

note that both the external pressure coefficients and the internal pressure coefficients were 

taken from a different table than the MWFRS for the entire test structure.  Eq. 4.4 can only 

be used for low-rise buildings of height less than or equal to 60 ft. 

 

4.4.1   Wind Loads for Studs in the Walls for Method 2 

   The critical dimension, a, of the studs in the walls was 3 ft for the test structure.   The 

effective area was based on the wall studs, which were 10 ft. tall and 2 ft. apart.  Figures 4.12 

and 4.13 represent the applied wind pressures acting normal to the walls at 120.34 mph (as 

established in Section 4.3.1) basic wind speed.  All wind pressures were external on the test 

structure.  The pressures are for both negative and positive pressures, suction and pressure, 

respectively.  Figures 4.14 and 4.15 represent the applied wind pressures acting normal to the 

walls at 50.33 mph (as established in Section 4.3.1), which was the maximum recorded wind 

speed from Hurricane Katrina.  The above listed figures indicate what wind pressure a given 

stud should be designed for.  Therefore, a corner stud would have a different design wind 

load than a central stud in the wall.  These design pressures on the wall studs could be used 

later for future research.   



www.manaraa.com

 70

 
Figure 4.12.  Method 2: C&C studs in the walls at 120.34 mph wind speed with suction 
 

 
Figure 4.13. Method 2: C&C studs in the walls at 120.34 mph wind speed with pressure 
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Figure 4.14. Method 2: C&C studs in the walls at 50.33 mph wind speed with suction 
 

 
Figure 4.15. Method 2: C&C studs in the walls at 50.33 mph wind speed with pressure 
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4.4.2 Wind Loads for Studs in the Walls for Method 1 
 
 As mentioned in Section 4.2, Method 1 design wind pressures were also calculated.  

However, these design wind pressures could not be adjusted to the maximum wind speed of 

56.2 mph, or 50.33 mph after adjusting for height (see Eq. 4.1), because the design charts for 

Method 1 did not read any less than 85 mph.  Also, the design charts for Method 1 wind 

design are for exposure B at h = 30 ft.   Adjustment was done for exposure C at h = 15 ft, 

which was the smallest height, using the adjustment factor λ.  Also, adjustment for the 

effective wind area was linearly interpolated in the design charts. 

 Figures 4.16 and 4.17 show the applied normal wind pressure distributions at the 

basic wind speed of V = 120.34 mph.  Positive pressures represent pressures into the test 

structure and negative pressures represent suctions on the test structure. 
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Figure 4.16. Method 1: C&C studs in the walls at 120.34 mph wind speed with suction 
 

 
Figure 4.17. Method 1: C&C studs in the walls at 120.34 mph wind speed with pressure 
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4.4.3   Wind Loads for Rafters/Trusses in the Hip Roof for Method 2 

   The critical dimension, a, of the wood rafters/trusses in the hip roof was 3 ft for the 

test structure.  The effective area was based on the roof trusses, which were 32 ft. long and 

spaced 2 ft. apart.  Figures 4.18 and 4.19 represent the applied wind pressures which acted 

normal to the hip roof at the basic wind speed of 120.34 mph (as established in Section 

4.3.1).  All wind pressures were external on the test structure.  Figures 4.20 and 4.21 

represent the applied wind pressures acting normal to the hip roof at 50.33 mph (as 

established in Section 4.3.1), which was the maximum recorded wind speed from Hurricane 

Katrina.  The above listed figures indicate which pressure a given rafter/truss in the hip roof 

should be designed for.  Therefore, a particular rafter/truss would have a variety of design 

wind loads along its length.  Since the pressures recorded from the test structure were given 

at specific locations (see Figure 3.8), this pressure distribution was compared directly to the 

field data recorded from Hurricane Katrina (see Section 6.4.3).     
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Figure 4.18. Method 2: C&C rafters/trusses at 120.34 mph wind speed with suction 

 

 
Figure 4.19. Method 2: C&C rafters/trusses at 120.34 mph wind speed with pressure 
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Figure 4.20. Method 2: C&C rafters/trusses at 50.33 mph wind speed with suction 

 

 
Figure 4.21. Method 2: C&C Rafters/Trusses at 50.33 mph wind speed with pressure 
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4.4.4 Wind Loads for Rafters/Trusses in the Hip Roof for Method 1 
 
 As mentioned in Section 4.2, Method 1 design wind pressures were also calculated.  

However, these design wind pressures could not be adjusted to the maximum wind speed of 

56.2 mph, or 50.33 mph after adjusting for height (see Eq. 4.1), because the design charts for 

Method 1 did not read any less than 85 mph.  Also, the design charts for Method 1 wind 

design are for exposure B at h = 30 ft.   Adjustment was done for exposure C at h = 15 ft, 

which was the smallest height, using the adjustment factor λ.  Also, adjustment for the 

effective wind area was interpolated in the design charts. 

 Figures 4.23 and 4.24 show the applied normal wind pressure distributions at the 

basic wind speed of V = 120.34 mph.  Positive pressures represent pressures into the test 

structure and negative pressures represent suctions on the test structure. 
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Figure 4.22. Method 1: C&C rafters/trusses at 120.34 mph wind speed with suction 
 
 

 
Figure 4.23. Method 1: C&C rafters/trusses at 120.34 mph wind speed with pressure 
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CHAPTER 5.  FINITE ELEMENT MODELING  

OF THE ROOF STRUCTURE 

 

The roof structure of the test house was analyzed using finite element computer 

software ANSYS 9.0 (Swanson Analysis Systems, 2006) and the results were compared to 

the available test data.  The analytical investigation was limited only to the roof structure 

because this component of the house was isolated from the rest of the house and the field 

data were obtained only for the hip roof (see details in Section 3.1).  Detailed modeling of the 

different roof components are presented in this chapter while the analysis results as well as 

comparisons between the analysis and experimental results are given in Chapter 6.        

 

5.1   Rafter/Truss System 

 The finite element model of the rafter/truss system is shown in Figure 5.1.  The type 

of elements used and the idealization process of these trusses and rafters are summarized in 

the following sub-sections.   
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Figure 5.1.  Finite element model used for the rafter/truss system 
 

5.1.1 Element Types Used 

 Various structural elements available in the ANSYS element library were used to 

produce the finite element (FE) model of the rafter/truss system.  Beam elements (beam4 as 

referred to in the ANSYS element library) were used to model the top and bottom chords of 

all trusses.  Truss elements (link8 in the ANSYS element library) were used to model the 

cross braces, or webs, in all the trusses and HJ10 rafters.  To account for the additional 

stiffness provided by the plates at the corners of the rafters (see Figure 3.6, Figure 5.2, and 

Appendix A), plate elements (shell63 in the ANSYS element library) were employed.  Figure 

5.2 shows a typical idealization for one of the truss structures.  More details on the three 
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different element types used for the rafter/truss system and the reasons for selecting these 

specific elements are presented below.    

 

Figure 5.2.  Different elements used establishing a FE model for truss A1 

 

 Figure 5.2 describes the modeling technique utilized in the finite element model by all 

rafter/truss members of the roof system, except the rafter CJ1.  Since this rafter was shown to 

be a part of the roof system, but was not provided by J.M. Harold Construction (2006) 

documents, the elements that comprised this rafter were assumed similar to that modeled in 

all other rafters.  For the location of rafter CJ1 refer to Figure 3.5.  Figure 5.3 depicts the 

elements utilized in rafter CJ1.  

 

 

Figure 5.3.  Assumed elements used for establishing a FE model for rafter CJ1 
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5.1.1.1 Beam4 Elements 

 Beam4 elements are three-dimensional elements with 6-degrees of freedom per node 

with tension, compression, torsion, and bending capabilities.  This idealization was necessary 

since direct loads from the roof sheathing and ceiling were transferred to the top and bottom 

chords of the trusses, respectively.     

The orientation of the local axes of the element cross section was accomplished by 

defining each element with respect to three nodes.  The nodes are entered as I, J, and K.  The 

first two nodes defined the element while the third node (K) ensures the proper orientation of 

the element in the 3-D space.  Figure 5.4 shows the orientation of the members using the 

three-node option.  The member properties for all beam4 elements, except wood truss A1, are 

listed in Table 5.1.  Wood truss A1 has different member properties since it is a two-ply truss 

(see details in Section 3.2), which were two trusses nailed back-to-back.  The member 

properties for wood truss A1 are listed in Table 5.2. 
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Figure 5.4.  Defining orientation of a beam4 element using three-node option (Swanson 
Analysis Systems, 2006) 

 

Table 5.1.  Geometric properties of Beam4 elements used for trusses, except truss A1 

Variable and Units Used Value 
Cross-sectional area, A (in2) 5.25 
Area moment of inertia, IZZ (in4) 0.984 
Area moment of inertia, IYY (in4) 5.359 
Thickness, TKZ (in) 3.5 
Thickness, TKY (in) 1.5 
Torsional moment of inertia, IXX (in4) 6.344 
  
Note: Remaining member properties were assumed a 
value of zero 
         Torsional moment of inertia was given as the polar 
         moment of inertia by IZZ + IYY 
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Table 5.2.  Geometric properties of Beam4 element used for truss A1 

Variable and Units Used Value 
Cross-sectional area, A (in2) 10.5 
Area moment of inertia, IZZ (in4) 7.875 
Area moment of inertia, IYY (in4) 10.719 
Thickness, TKY (in) 3.5 
Thickness, TKZ (in) 3 
Torsional moment of inertia, IXX (in4) 18.594 
  
Note: Remaining member properties were assumed a 
value of zero 
         Torsional moment of inertia was given as the polar 
         moment of inertia by IZZ + IYY 

 

5.1.1.2 Link8 Elements 

 Three dimensional truss members were used to model the diagonal and vertical 

members of the rafter/truss system.  Link8 elements are three-dimensional, uniaxial tension-

compression elements with three DOFs at each node.  The member properties for the link8 

elements are given in Table 5.3 below. 

 

Table 5.3.  Geometric properties of link8 elements used for the diagonal and vertical 
members of the rafter/truss system 

 

Variable and Units Used Value 
Cross-sectional area, A (in2) 5.25 
Initial strain  0 

 

5.1.1.3 Shell63 Elements 

 Shell63 elements were used to model the stiffener plates in the ends of all the 

rafters/trusses, except for the CJ1 rafters (see Section 5.1.1).  This element has six DOF at 

each node.  The six DOF are translations in the nodal x-, y-, and z-directions and rotations in 
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the nodal x-, y-, and z-directions.  The stiffener plates are the 2x6-in. members that run along 

the bottom chord of the rafters/trusses.  Although they are referred to as 2x6-in. members by 

manufacturers, the actual cross-section of these members is 1.5-in. x 5.5-in., which is used to 

define the properties of the shell element.  Shell63 elements were only used from the 

outermost corners, which is the overhang, to the wall support that is 2 ft. from the hip roof 

overhang (see Figures 5.1 and 5.2).  The stiffener plates in some cases extend beyond the 

wall supports; however, for simplicity they were not included in the model.   

 Shell63 elements have both membrane and bending capabilities, which allow the 

element to move in- and out-of-plane, respectively.  After a preliminary analysis, membrane 

action was determined to be more important for the FE model.  Furthermore, out-of-plane 

action was completely neglected for the stiffener plates.       

 The geometric properties for the shell63 elements utilized in the stiffener plates are 

given in Table 5.4 below. 

 

Table 5.4.  Geometric properties of shell63 elements used for the stiffener plates of the 
rafter/truss system 

   

Variable and Units Used Value 
Shell thickness at node I (in) 1.5 
Shell thickness at node J (in) 1.5 
Shell thickness at node K (in) 1.5 
Shell thickness at node L (in) 1.5 
  
Note: Remaining member properties were assumed a 
value of zero 

 

 

 



www.manaraa.com

 86

5.1.2 Material Properties  

 The material properties for all element types of the rafter/truss system were assumed 

to be the same because the majority of the members were Southern Pine #2 grade lumber (see 

Appendix A).  The density for this lumber grade was established using a wood design guide 

(National Design Specification Supplement, 2001).  Accordingly, the density was determined 

from Eq. 5.1.   

 

 ⎥⎦
⎤

⎢⎣
⎡ +⎥

⎦

⎤
⎢
⎣

⎡
+

=
100

1
))(009.0(1

4.62 MC
MCG

GDensity                        (5.1) 

  

Eq. 5.1, where G is the specific gravity and MC is the moisture content, was based on the 

southern pine #2 grade lumber and an assumed moisture content of 15%, which is a common 

industry standard.  Also, it was assumed that 5% of the rafter/truss material density be used 

for the nailing and connections.  The density input into ANSYS 9.0 is not a weight density, 

but mass density.  Mass density was obtained by dividing the weight density by the 

acceleration of gravity (32.2 ft/s2).  Including mass density in ANSYS analyses accounts for 

effects of self weight.  Table 5.5 summarizes the material properties utilized in the FE model 

of the roof structure and more details can be found in Appendix A.  These properties, 

including the mass density, modulus of elasticity (EX) in the nodal x-direction and poisson’s 

ratio (ν), were assumed isotropic material properties in the FE model.  This assumption was 

considered adequate for the scope of the work presented in this report. 
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Table 5.5.  Material properties used for rafter/truss system 

Variable and Units Used Value 
Specific gravity, G  0.55 
Modulus of elasticity, EX (psi) 1,600,000 
Poisson's ratio, ν 0 
Weight density (rafters/trusses), D (lb/ft3) 36.7402 
Weight density (nailing/connections), D (lb/ft3) 1.837 
Mass density, D (lb-s/ft4) 1.1981 

 

 The total weight of the rafter/truss system was 3,867.4 lbs., using the above table for 

material properties.  The weight of the roof sheathing is further evaluated in Section 5.2.2.  

The weight of the structure, including the sheathing weight is further evaluated in Section 

6.1.     

 

5.2 Roof Sheathing 

 Roof sheathing of the test house consists of asphaltic shingles, roofing felt, plywood, 

and gypsum board.  Figure 5.5 shows the FE model of the hip roof sheathing.  The element 

size used for sheathing in conjunction with the model of the rafter/truss system was 2-ft. x 2-

ft. over the entire hip roof.  However, since this was a hip roof and the truss webs intersected 

the sheathing differently along every truss, the sheathing could not retain this rectangular grid 

across the entire structure.  This is evident along the ridgelines, corners, and a few areas of 

the north and south roof surfaces (see Figure 5.5).  The selection of the size of sheathing 

elements was of importance since it was necessary to interpolate the recorded field pressure 

data to represent the distribution of the pressure over the entire roof.  More information on 

the sheathing elements is presented below while details on how the interpolation of the 
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measured pressures were carried out to represent them as external loads on sheathing 

elements is given in Section 6.2.2.   
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Figure 5.5.  FE model of sheathing used for the hip roof 
 

5.2.1 Shell63 Element  

 Shell63 element available in ANSYS 9.0 was used to model the roof sheathing and 

description of this element can be found in Section 5.1.3.  However, two noticeable changes 

were adopted when using the shell63 element as roof sheathing.  First, the element is 

modeled to have membrane and bending capabilities to simulate realistic behavior of the 

sheathing, allowing the element to move in- and out-of-plane, respectively.  Second, the 

orientation of the element is important because the wind load needs to be applied normal to 
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the surface of the sheathing.  Figure 5.6 shows the member orientation of a shell63 element 

along with its face numbers.  All shell63 elements were represented in the FE model such 

that they represent static wind pressures acting on face surface number 1 or 2, whichever is 

the exterior face surface modeled (see Figure 5.5).    

 

Figure 5.6.  Member orientation of shell63 element (Swanson Analysis Systems, 2006) 

 

5.2.2 Material Properties 

 The material properties for the hip roof sheathing were established as additive of 

those of all the layered elements.  The self weights of the asphaltic shingles, roofing felt, 

plywood, and gypsum board were taken as those specified in ASCE 7-02 Standard because 

more accurate estimates of material used in the test house were not available.  In addition, a 

5% of weight of the plywood and gypsum board used to model the weight of nailing and 

connections to the hip roof.     

 The plywood sheathing was the material used for calculation of the modulus of 

elasticity in the x-direction (EX) and poisson’s ratio (ν ) because the plywood sheathing was 
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the thickest element used for the layered roof sheathing.  Although wood utilizes anisotropic 

material properties due the wood grain’s direction, the plywood sheathing was assumed with 

isotropic properties to keep the FE model as a simple, linear model.  Changing the roof 

sheathing to anisotropic is yet another area of future research. 

 The sheathing properties entered in the FE model were the mass density established 

from the estimation of the self weight and other isotropic material properties.  The additional 

isotropic material properties included the modulus of elasticity in the nodal x-direction (EX) 

in units of lb/in2 (psi) and poisson’s ratio (ν).  Table 5.6 lists the material properties used for 

the hip roof sheathing in the FE model.  Although the member properties given by the ASCE 

7-02 Standard are listed as lb/ft2, they were adjusted to obtain the equivalent mass density 

from Eq. 5.2, where the thickness refers to the ½-in. thickness of the shell63 element. 
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Table 5.6.  Material properties used for the hip roof sheathing 

Variable and Units Used Value 
Unit weight of asphalt shingles (psf) 2 
Unit weight of single ply sheet (roofing felt) 
(psf) 0.7 
Unit weight of 1/2-in. plywood (psf) 1.6 
Unit weight of 1/2-in. plywood 
(nailing/connections), (psf) 0.08 
Unit weight of gypsum sheathing (psf) 2 
Unit weight of gypsum sheathing 
(nailing/connections) (psf) 0.1 
Total weight (psf) 6.48 
Modulus of elasticity, EX (psi) 1,600,000 
Poisson's ratio, ν 0 
Mass density, D (lb-s/ft4) 4.8298 

 

 The total weight of the hip roof sheathing was 10,492 lbs., using the above table for 

material properties.  The weight of the structure, including the sheathing weight is further 

evaluated in Section 6.1.     

 

5.3 Boundary Conditions 

 The boundary conditions used in the FE model formulation consisted of coupling of 

nodes and constraints at various nodes including the support locations.  Nodes connecting the 

sheathing to the truss were coupled in the x-, y-, and z-directions.  All nodes were modeled as 

rollers at all wall/rafter/truss supports, except underneath the CJ3 rafters, to ensure a realistic 

model.  Nodes connecting the sheathing to the truss were coupled in the x-, y-, and z-

directions.   
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5.3.1 Coupled Nodes 

 Coupling of nodes enables forcing of one node to undergo identical deformation of 

another node in the selected degrees of freedom.  A set of coupled DOFs contains a prime 

DOF (master node), and one or more slave DOFs.  The master node with the DOF to be 

retained and the slave nodes represent those DOF to be condensed in the stiffness matrix.   

 Translational degrees of freedom for the rafters CJ1, CJ3, and CJ5 were coupled in 

all three directions, except to the top chord of rafter HJ10, to the nodes of rafter HJ10 (see 

Figure 5.9).  Translational degrees of freedom for the rafters EJ7 and HJ10 were coupled in 

all three directions, except to the top chord of rafter HJ10, to the nodes on the A1 trusses (see 

Figure 5.9).  This will simulate a pinned connection at these locations.  The top chord of 

rafter HJ10 was only coupled in the vertical, or y-direction, degree of freedom due to the 

large shear thrust force that develops along this diagonal rafter.  After preliminary analysis, 

this coupling in only the vertical direction was determined to be a better fit for the FE model 

comparison to the field data in Chapter 6 (see Section 6.1).  In this case, the master nodes 

were the nodes for rafter HJ10 and the other rafter nodes were treated as the slave nodes.  For 

the wood rafters that frame into the truss A1 (e.g. EJ7 and HJ10), the master node will be the 

node for truss A1 and the slave nodes will be the rafter nodes.  Figure 5.7 illustrates how 

wood rafter EJ7 was connected to the A1 truss to establish pin connections at the top and 

bottom chords of rafter EJ7.   Figure 5.8 illustrates how wood rafter CJ5 was connected to 

rafter HJ10.  Rafters CJ1 and CJ3 were similarly connected to rafter HJ10.   
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Figure 5.7.  Coupling of nodes of rafter EJ7 to nodes of truss A1 

 

 
 

Figure 5.8.  Coupling of nodes of rafter CJ5 to nodes of rafter HJ10  
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Figure 5.9.  Coupling of nodes between rafters and truss A1, coupling of nodes along 

ridgeline, and support conditions shown 
 
 
 The translations of the nodes representing the sheathing elements were also coupled 

to the rafters and trusses (see Figure 5.9).  In other words, the ridgelines of the sheathing 

were coupled together for the nodal displacements in the x-, y-, and z-directions.  This was 

necessary to simulate the discontinuity of the plywood used as the roof sheathing along the 

ridgelines.  

 

5.3.2 Support Conditions 

 The support conditions for the hip roof trusses are rollers at the wall/rafter/truss 

support, which are 2-ft. in from the hip roof overhang (see Figure 5.9 and details in Section 



www.manaraa.com

 95

3.2).  The rollers were chosen to allow the trusses to move along the lengths of their bottom 

chords enabling the rafter/truss system to move in-plane and out-of-plane.  Although the out-

of-plane movement was relatively small in comparison to the in-plane movement, the FE 

model was assumed to allow the rafter/truss system to move in both directions.  Only where 

the test structure had load cells was there a roller support (see Figures 3.7 and 3.8).  

However, for stability purposes one node must be restrained in the nodal x-, y-, and z-

directions.  This was accomplished in the FE model by rotating the nodal coordinates of the 

node at the corner wall/rafter underneath rafter HJ10 as shown in Figure 5.10.    
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Figure 5.10.  Rotation of nodal coordinates to satisfy support condition 
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CHAPTER 6. FINITE ELEMENT ANALYSIS RESULTS AND 

COMPARISONS WITH FIELD DATA AND  

LOAD SPECIFIED IN DESIGN CODES 

 

 A finite element model for the roof of the test structure was presented in Chapter 5.  

In this chapter, the analysis results obtained using the finite element model are presented and 

the results are compared to the field data where appropriate.  As detailed in Chapter 3, the 

test structure was instrumented to measure both the load carried by each wood truss in the 

roof system and the pressure induced at discrete locations on the roof during a hurricane 

event (see Figure 3.8).  First, a model validation is carried out considering only the gravity 

loads of the roof system.  Next, various pressure distributions from Hurricane Katrina at 

specified times are applied to the FE model as static loads and the results were compared 

with the results obtained from the field data for Hurricane Katrina.  Finally, the ASCE 7-02 

Standard wind pressure distributions of the MWFRS at the peak wind speed of 56.2 mph 

from Hurricane Katrina were applied to the FE model and are compared to the field data of 

Hurricane Katrina.  The MWFRS wind pressure distributions for the wind speed of the 

location of the test roof, which was Pensacola, Florida, was then compared to the peak wind 

speed.  Also, the ASCE 7-02 Standard wind pressure distributions of the C&C was utilized 

and compared to the field measurements during Hurricane Katrina. 
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6.1 Analysis of the Tested Structure under Gravity Loads 

As previously stated, the roof of the test structure was analyzed under its own weight 

and the results were compared to field data to examine the validity of the FE model and 

evaluate the accuracy of the estimated gravity loads.  Unfortunately, field data was not 

recorded under calm wind conditions.  Therefore, the test data representing the gravity 

effects alone was chosen from the data collected during Hurricane Katrina at the beginning 

and towards the end of the event at very low wind speeds.  For this purpose, four sets of data 

were identified and the corresponding wind speeds and time occurrences were: 0.13 mph at 

8:38:1.23 PM on August 28, 2005, 1.87 mph at 12:50:26.55 AM on August 29, 2005, 0.2 

mph at 3:21:47.94 AM on August 29, 2005, and 2:01:43.66 PM on August 29, 2005.  One 

should note that the peak wind speed of 56.2 mph was registered at 1:14:6.43 PM on August 

29, 2005.  Table 6.1 lists the recorded total weight of the roof at the selected times along with 

other field data. 

 

Table 6.1.  Recorded weight of test structure at given times 

Load Case Wind Speed   Total Weight 
Number (mph) Time * Date (lbs) 

1 0.13 8:38:1.23 PM  August 28, 2005 13,087 
2 1.87 12:50:26.55 AM  August 29, 2005 13,133 
3 0.2 3:21:47.94 AM  August 29, 2005 13,348 
4 0.47 2:01:43.66 PM  August 29, 2005 13,452 

     
* Standard time shown above was converted from hundredths of seconds since midnight in 
the data set.  (e.g., 7,560,016 hsec converts to 9:00:16 PM) 

 

 Examining the table above illustrates that there is insignificant differences between 

the total roof weight estimated for the four load cases.  Even though Load Case 4 
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corresponded to a time well beyond the peak wind activity that could have increased the roof 

weight possibly due to increased moisture, there was essentially no change to the total weight 

of the roof before and after the peak hurricane activity.  At the beginning of the research, the 

FPL researchers notified that a set of data was collected on from the structure when it was 

first instrumented in March 15, 2002, which essentially captured the effects of the gravity 

load.  Accordingly, the total weight of the roof at that time was estimated to be 16,149 lbs.  

There was no obvious explanation for the noticeably large discrepancy between the data sets 

listed in Table 6.1 and the initial estimate of the roof weight.  After consultation with the FPL 

personnel, it was decided not to use the initial data set in the gravity load analysis of the roof 

system.  However, it is recommended that this issue be resolved in the future by taking 

periodic gravity load measurements during wet and dry seasons.   

 Referring to Sections 5.1.2 and 5.2.2 where the material densities were estimated, the 

finite element analysis of the tested structure yielded a total dead weight of 14,359 lbs.  This 

value is about 10% larger than the average weight of 13,255 lbs estimated from Table 6.1.  

This discrepancy between the measured and analytical values could have resulted from the 

differences between the actual material mass density and these listed in Sections 5.1.2 and 

5.2.2.  To simplify the load distribution comparison between the measured and FE results and 

validate the analysis model, the mass density was proportionally reduced to match a total 

weight of 13,087 lbs, which is used in the subsequent finite element analyses.   

 Figures 6.1 through 6.4 show the measured loads corresponding to the different load 

cells and results obtained from the theoretical analyses for Load Cases 1, 2, 3 and 4 identified 

in Table 6.1 (see Section 3.3 for location of the load cells).   
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Figure 6.1.  Comparison of measured data from load cells along the north wall under gravity 

loads 
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Figure 6.2.  Comparison of measured data from load cells along the south wall under gravity 

loads 
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Figure 6.3.  Comparison of measured data from load cells along the east wall under gravity 

loads 
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Figure 6.4.  Comparison of measured data from load cells along the west wall under gravity 

loads 
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 As can be seen in Figures 6.1 to 6.4, the measured and the analytical results for the 

four load cases are in satisfactory agreement.  The differences between the measured and 

analytical results could have been due to the idealization used in the finite element approach 

to model the connections between the different elements of the roof system.  In addition, it is 

observed that the distribution of the experimental data is affected by localized variations in 

the actual structure because the measured loads do not reflect the symmetry of the roof 

structure.  For example, load cells N8 through N15 should record identical reactions since all 

the members supported by these load cells are A6 trusses and the hip roof is symmetric.  To 

alleviate this problem, the measured loads at similar load cell locations were averaged.  For 

example, reactions from all HJ10 rafters were averaged to obtain a common experimental 

value.   

 Figures 6.5 to 6.8 compare the average experimental load cell reactions obtained at 

0.13 mph wind speed (i.e., Load Case 3) with the analytical results reported above in Figures 

6.1 to 6.4.  It is seen that the comparison between the experimental and analytical reactions at 

the load cell locations has noticeably improved.  The analytical results are within ±10% of 

the experimental values along the north and south walls, and the analytical results are within 

±25% of the experimental values along the east and west walls.  However, larger 

discrepancies are seen at the north and south walls at the following locations: N03, N05, N06, 

N17, N18, N20, S03, S05, S06, S17, S18 and S20 (see Figures 6.5 and 6.6).  Possible factor 

that may attribute to the difference in loads may be due to the realistic support conditions at 

these particular locations may not be modeled correctly and not modeling the load conditions 

or support path that the gravity load takes.  For more conclusions to the gravity analysis refer 

to Section 7.1.   
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Figure 6.5.  Comparison of averaged data from load cells along north wall under gravity 

loads 
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Figure 6.6.  Comparison of averaged data from load cells along south wall under gravity 

loads 



www.manaraa.com

 103

0

20

40

60

80

100

120

140

160

180

E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 E12

Load Cells

Lo
ad

 (l
bs

)
Average 0.13 mph w ind speed FEM

 
Figure 6.7.  Comparison of averaged data from load cells along east wall under gravity loads 
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Figure 6.8.  Comparison of averaged data from load cells along west wall under gravity loads 
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 6.1.1 Other Results from the Finite Element Analysis 

 Figure 6.9 summarizes the deflection of the roof system.  Areas of interest in the 

deflected shape were along the east and west hip surfaces of the roof system, which were the 

short hips.  These hip surfaces show that small regions experience uplift outside of the wall 

support due to self weight of the roof system.  The maximum deflection occurs at the center 

of the hip roof along the north hip surface.  It should be noted that the maximum deflection 

occurs along the hip roof sheathing and top chord of one of the middle A1 trusses.    
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Figure 6.9.  Vertical component of displacement for hip roof sheathing in units of ft. 

 
 

Figure 6.10 shows the 1st principal stress for the test roof under gravity loading.  The 

figure further validates the FE results because most of the stress on the test roof is negative, 

which indicate compressive stresses.   Only on  the outside  edges of  the test  roof  is  there a   
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positive stress, or tension stress, induced on the hip roof.  This is due to the uplift at the wall 

overhang. 
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Figure 6.10.  1st principal stress for hip roof sheathing in units of psf 

 
 

Figure 6.11 shows a vector plot of the principal stress scaled in magnitude with their 

proper direction of where the load is being transferred through the roof system.  From Figure 

6.11 it is obvious that much of the load is toward the corners of the roof system.  Also, the 

ridgeline of the roof caused a change in direction of the load path.    
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Figure 6.11.  Vector plot of roof system using centroid of each sheathing element 
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6.2 Analysis of the Tested Structure under Wind Loads  
 
 A hurricane wind speed is defined as a sustained wind, which is an average one-

minute wind gust, at 74 mph or greater measured at 10 ft above ground (National Hurricane 

Preparedness, 2006).  Even though the Katrina was a hurricane event, the speed of the wind 

near the location of the test house cannot be classified as a hurricane wind, but is more of a 

basic wind speed condition.  This is not surprising due to the fact that the eye of the 

Hurricane Katrina traveled about 200 miles west of Pensacola, Florida.  A one-minute 

average wind speed for the field data obtained at the location of the test house was only 27.1 

mph when the peak wind speed of 56.2 mph was used as the median wind speed.     

 Representing an action induced by wind from the field as equivalent loads on a 

structure posses several challenges.  The reasons behind these challenges include: continuous 

change in wind speed, continuous change in wind direction, change in angle of attack on a 

structure, wind vortices are shed across a structure surface, added influence of precipitation, 

and change in climatic data such as humidity.  There is also a possibility that the wind may 

attack the test structure in a circular pattern during a hurricane event and dissipate over land, 

which is almost impossible to account for based on the collected data.  Despite these 

uncertainties this report assumes that the wind that attacked the test house during Hurricane 

Katrina was a straight wind causing pressures only in the direction normal to the surface and 

quantify its effects on the roof of the test structure.  This exercise is expected to shed light on 

how well the FE results compared to the field data to further validate the theoretical model 

produced in this investigation.  

 According to the National Weather Service (NWS) Forecast Office (2006), Hurricane 

Katrina caused sustained winds of up to 140 mph during landfall, which classified it as a 
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strong category 4 hurricane.  The impact of the storm’s landfall was measured near Grand 

Isle, Louisiana (NWS Forecast Office, 2006).  Since the field data received in this study was 

measured in Pensacola, Florida, the data used in this report had to be verified against wind 

data reported by NWS (see Section 3.5).  A peak wind speed of 50 knots, or 57.5 mph, was 

recorded by WEAR-TV in Pensacola, Florida (NWS Forecast Office, 2006) on August 29, 

2005.    The peak wind speed measured in the field was 56.2 mph at 1:14:6.43 PM on August 

29, 2005 and corresponded well (2.33% error) to the data from the NWS Forecast Office.   

 Table 6.2 summarizes some of the important wind loading conditions that occurred 

during data collection on the test structure.  All the load conditions will be analyzed in this 

section of the report. 

 

Table 6.2.  Selected wind loading conditions based on the field data 

Load Characteristic Wind   Total 
Case During Data Speed   Weight

Number Collection (mph) Time * Date (lbs) 
5 Peak wind speed 56.2  1:14:6.43 PM  August 29, 2005 13,298 
6 Highest pressures 43.87  1:57:0.24 PM  August 29, 2005 12,495 
7 Highest load1 36.87  2:19:36.24 PM  August 29, 2005 14,358 
8 Lightest load2 24.27  3:25:17.09 PM  August 29, 2005 11,886 

 3 (previous)  Lowest wind speed 0.13  8:38:1.23 PM  August 28, 2005 13,087 

9 

Average over time 
interval around 

highest pressures3 43.87 
±1 minutes from 
1:57:0.24 PM  August 29, 2005 12,495 

      
1 wind effect causing highest summation of load cell during field test duration 
2 wind effect causing lightest summation of load cells during field test duration 
3 mean time in interval corresponding to the highest pressures recorded as the median 
value 
* Standard time shown above was converted from hundredths of seconds since midnight in the data set.
(e.g., 7,560,016 hsec converts to 9:00:16 PM) 
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6.2.1 Field Data 

 As previously mentioned, the effect of the Hurricane Katrina winds on the test 

structure was monitored using 68 load cells underneath the wood rafters/trusses and the 76 

pressure cells on the hip roof sheathing (see Figure 3.8). 

 Figures 6.12 and 6.13 show examples of data collected for a load cell (i.e., N01) and a 

pressure cell (i.e., S15P), respectively, during the 13th hour of Hurricane Katrina.  As clearly 

seen in the figures for the short duration, both the load cell and pressure cell data fluctuated 

greatly throughout the duration of the hurricane.   Also, note that the field data for Hurricane 

Katrina was measured in hundredths of seconds since midnight, which was later converted to 

an adjusted military time.  For example, adjusted military time of 1380.25 converts to 

1:48:15 PM.  The only difference in the adjusted military time from military time is that the 

minutes and seconds end in increments of 100, not 60.    
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Figure 6.12.  Loads recorded for adjusted military time duration from 1:00 PM – 2:00 PM 

August 29, 2005, for load cell N01 
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Figure 6.13.  Pressures recorded for adjusted military time duration from 1:00 PM – 2:00 PM 

August 29, 2005, for pressure cell S15P 
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 As seen for load cell N01 in Figure 6.12, each load cell supporting the roof of the test 

structure recorded negative reactions throughout the duration of the data collection.  (For the 

installation details and locations of the load cells, refer to Section 3.3).  This is because each 

load cell was zeroed before installation and subjected to compression force or a negative 

number due to gravity load of the roof.  Consequently, when the roof system experienced 

suction, the load cell expanded to become less negative, or more positive.  Conversely, when 

the roof system experienced pressure, the load cell compressed to become more negative, or 

less positive.  As seen in Figure 6.13, the pressures measured in this particular location were 

generally negative with rare occurrences of positive values.  Negative pressures indicated 

suctions and positive pressures indicated pressures onto the test roof.  Also, it is noted that 

the pressure cells were measured within an accuracy of ±1 psf. 

 For a wider array of the field data, both the load cell N01 and pressure cell S15P were 

plotted for the entire duration of the field data collection.  In addition to depicting the 

variations in reactions for the load cells and pressures for the pressure cells, Figures 6.14 to 

6.21 identify some of the load cases included in Table 6.2.  Load cell N01 did not experience 

the most fluctuating reactions, but was located at a corner of the hip roof and showed 

considerable variations in the reaction force.  Also, pressure cell S15P did record the 

maximum suction on the test roof, which reached a value of -19 psf, and was chose to be 

plotted for this reason.    
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Figure 6.14.  Loads recorded for adjusted military time duration from 4:00 PM – 10:00 PM 

August 28, 2005, for load cell N01 
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Figure 6.15.  Loads recorded for adjusted military time duration from 10:00 PM August 28, 

2005 – 4:00 AM August 29, 2005, for load cell N01 



www.manaraa.com

 113

-260

-255

-250

-245

-240

-235

-230

-225

-220

400 500 600 700 800 900 1000

Time (Adjusted Military)

Lo
ad

 (l
bs

)

 
Figure 6.16.  Loads recorded for adjusted military time duration from 4:00 AM – 10:00 AM 

August 29, 2005, for load cell N01 
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Figure 6.17.  Loads recorded for adjusted military time duration from 10:00 AM – 4:00 PM 

August 29, 2005, for load cell N01 
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Figure 6.18.  Pressures recorded for adjusted military time duration from 4:00 PM – 10:00 

PM August 28, 2005, for pressure cell S15P 
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Figure 6.19.  Pressures recorded for adjusted military time duration from 10:00 PM August 

28, 2005 – 4:00 AM August 29, 2005, for pressure cell S15P 
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Figure 6.20.  Pressures recorded for adjusted military time duration from 4:00 AM – 10:00 

AM August 29, 2005, for pressure cell S15P 
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Figure 6.21.  Pressures recorded for adjusted military time duration from 10:00 AM – 4:00 

PM August 29, 2005, for pressure cell S15P 
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 As shown in Figures 6.14 through 6.21, data collection was performed every second 

from 4:41:43 PM on August 28th, 2005 to 3:53:57 PM on August 29th, 2005.  It is noted that 

there is no continuation line seen in Figures 6.15 and 6.19, which would reflect when the day 

switched from August 28, 2005 to August 29, 2005.   

 Furthermore, the peak wind speed did not produce the peak wind pressures observed 

on the roof of the test structure, which occurred at 1:57:0.24 PM on August 29, 2005, at a 

wind speed of 43.87 mph.  The peak wind speed of 56.2 mph occurred 42 minutes and 53.81 

seconds prior to recording the peak wind pressures.  This could have been due to the 

continuous changes in wind speeds and direction and duration of attack on the test structure 

(see Section 6.1).  Also, note that the sum of the load cell reactions did not occur at the same 

time as the pressure cells peaked.  The test structure recorded the highest load of 14,358 lbs 

at 36.87 mph at 2:19:36.24 PM on August 29, 2005, and the lightest load of 11,886 lbs was at 

24.27 mph at 3:25:17.09 PM on August 29, 2005.  These variations corresponded 

respectively to 9.7% and –9.2% differences with respect to the gravity load of the roof 

obtained at the lowest wind speed at 8:38:1.23 PM on August 28, 2005, and a total 

fluctuation of 2,472 due to wind load effect on the roof of the test structure.  Based on these 

observations, it is also clear that the maximum wind pressures and the time of the maximum 

wind effects did not occur simultaneously, and that the maximum wind effects occurred at a 

lower wind speed.  This discrepancy could have been due to many reasons, including those 

mentioned in Section 6.1 for the staggered field data in the gravity analysis, duration of the 

wind loads, dynamic effects, change in wind load distribution, vortex shedding, and influence 

of precipitation.   
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 Figures 6.22 through 6.25 show all the load cell reactions for Load Cases 4, 5, 6, 7, 8 

and 9.  Note that the load cell reactions were changed to positive reactions to simplify the 

discussion in this section, even though the actual recorded values were negative as shown in 

Figure 6.12.  The negative reactions signified that the load cells of the test structure recorded 

an initial zero value before placement, and compression due to gravity loads.   
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Figure 6.22.  Data from load cells located on top of the north wall for Load Cases 3, 5, 6, 7, 

8, and 9 
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Figure 6.23.  Data from load cells located on top of the south wall for Load Cases 3, 5, 6, 7, 

8, and 9 
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Figure 6.24.  Data from load cells located on top of the east wall for Load Cases 3, 5, 6, 7, 8, 

and 9 
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Figure 6.25.  Data from load cells located on top of the west wall for Load Cases 3, 5, 6, 7, 8, 
and 9 
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 Under the lowest wind speed of 0.13 mph, the load cells were expected to record 

downward reaction loads, which were assumed to represent the dead weight of the roof 

structure (see Section 6.1).  This is due to insignificant wind pressures associated with the 

low wind speed.  If wind loads induced suction on the entire roof, the load cells would 

experience less downward reaction forces.  This was validated when the load cell data 

associated with the lowest wind speed were compared to those recorded at the highest 

recorded wind pressures as well as the peak wind speed.  The results from Figures 6.22 to 

6.25 don’t validate this conclusion.  For example, load cells N01 and N07 violated this 

conclusion, as load cells N02 through N06 caused this conclusion to be true.  The reason for 

the discrepancy was due to the fluctuation on the load cells.  However, when the highest load 

recorded and the lightest loads recorded were compared for the wind effect on the test 

structure, all of the load cells fit the noted trend.  Therefore, the wind effect of the field data 

was best illustrated when using the highest load recorded and the lightest load recorded.   

Figures 6.26 through 6.29 show the wind effect of only the highest and lightest load 

recorded. 
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Figure 6.26.  Data from load cells located on top of the north wall for maximum wind effects 

using Load Cases 7 and 8 
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Figure 6.27.  Data from load cells located on top of the south wall for maximum wind effects 

using Load Cases 7 and 8 
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Figure 6.28.  Data from load cells located on top of the east wall for maximum wind effects 

using Load Cases 7 and 8 
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Figure 6.29.  Data from load cells located on top of the west wall for maximum wind effects 

using Load Cases 7 and 8 
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 In addition the demonstration of wind effects, the load cell reactions shown in Figures 

6.26 to 6.29 are used to compare with results obtained from the finite element analyses that 

are reported in the subsequent sections.  It is worthy to note that more in-depth statistical 

analyses of the collected field data and incorporation of dynamic effects could have been 

more appropriate, but they are beyond the scope of the work chosen for the study presented 

in this report.  Other improvements that could be considered would be to the model itself by 

more accurately capturing the behavior of connections between different elements of the roof 

structure.     

 

6.2.2 Finite Element Analysis 

The roof of the test structure was analyzed using the ANSYS finite element program 

representing the effects of Hurricane Katrina wind at three different conditions: 1) wind 

effect due to the peak wind speed of 56.2 mph (Load Case 5), 2) wind effect due to the 

highest wind pressures recorded at 43.87 mph (Load Case 6), and 3) wind effect representing 

maximum suction developed over the entire roof during a 2-minute interval from the time 

that recorded the highest pressures with a wind speed of 43.87 mph (Load Case 9).  The third 

wind effect extrapolated the field data to find the minimum reactions and the maximum 

suctions on the test roof during the 2-minute interval for a worst case scenario.  In contrast to 

the third wind effect, which represents an envelope of the maximum suction over a time 

interval, the first two wind effects are evaluated for given instants in time.  Over the chosen 

time interval, the third wind effect was chosen as a worst case scenario by considering only 

the maximum suctions experienced at each gauge location on the test roof, resulting in no 
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pressure acting on the roof.  The suctions were considered rather than pressures to examine if 

the maximum effects were more comparable over the interval, rather than the time instants. 

For all three cases, the effects due to wind pressure alone on the roof of the test 

structure were considered by subtracting the effects of gravity loads.  In the finite element 

analysis this was achieved by only applying the wind loads.  For the field data, the 

corresponding information was established by subtracting gravity effects reported in Figures 

6.1 – 6.4 (Load Case 3) from the total reactions measured by the load cells.  In this respect, 

there were two further cases considered.  Case I refers to the wind load effect after the 

gravity load corresponding to Load Case 3 subtracted.  Case II corresponds to the maximum 

possible effects on load cells, which was found by subtracting Load Case 3 from Load Case 

8.  Although the load cell data for the case occurred at a different time, this approach was to 

compare the reactions from the FE model with the maximum wind effect that occurred 

during Hurricane Katrina.     

 To represent the wind pressure on the finite element model of the roof of the test 

structure, the pressures found in the field at the locations of the pressure cells were 

interpolated to find the pressures at the nodes of the finite element model.  Although the wind 

speeds needed to be adjusted from 25 ft of the anemometer height to the mean roof height of 

12.5 ft (see Section 4.3.1), the data from the pressure cells did not need to be adjusted 

because they were measured along the roof surfaces.  The wind pressures were interpolated 

as all the wind pressures across the whole test roof were known at several discrete locations 

(see Figure 3.8).  This, in turn, produced the equivalent static wind pressures at the time the 

wind pressures were taken.  This wind effect was measured to find how closely the load cell 

reactions for the field data and FE model correspond. 
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6.2.2.1 Analysis at a Wind Speed of 56.2 mph 

 The wind pressures measured in psf at the 56.2 mph wind speed (Load Case 5) are 

shown in Figure 6.30.  The circled numbers represent suction on the test roof, while a 

number with a square around it correspond to a pressure into the test roof.  Figures 6.36 and 

6.42 are similar to Figure 6.30 for other wind conditions.  In Figure 6.30, it is seen that only 

the southeast side of the test structure was under pressure at the peak wind speed.  Therefore, 

the southeast side of the test structure should theoretically produce more compressive forces 

in the load cells around this location. 



www.manaraa.com

 126

 

Figure 6.30.  Wind pressures in psf at 56.2 mph on the roof of the test structure 

 

 Using the recorded wind pressures and suctions at the discrete locations of the 

pressure cells as shown in Figure 6.30, the wind pressures were linearly interpolated to give 

an equivalent wind pressure or suction for each hip roof sheathing element of the FE model.  

It is noted that the pressures at the nodes were averaged to find an equivalent hip roof 

sheathing pressure for sheathing elements.  Figure 6.31 depicts the representation of the 



www.manaraa.com

 127

interpolated wind pressures and suctions on the hip roof sheathing as modeled in the finite 

element analysis.  Figure 6.37 and 6.43 are similar to Figure 6.31 for other wind load 

directions.   
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Figure 6.31.  Wind pressures (positive values) or suctions (negative values) in psf 
represented in the FE model at 56.2 mph 

 

 After eliminating the influence of gravity loads, the finite element model of the roof 

system was analyzed only for the wind pressures shown in Figure 6.31.  Figures 6.32 to 6.35 

show the comparisons between the measured and analytical results of the reaction loads at 

the load cell locations for both Case I and Case II.  In these figures, a negative load cell 

reaction indicates that the load cell was subjected to tension, which may be a direct effect of 

suction applied to the test roof.  Conversely, a positive load cell reaction represents the load 

cell in compression, which  could be likely  due to a direct effect of  pressure is applied to the 
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roof.   Figures 6.38 to 6.41 and Figure 6.44 to 6.47 are similar to Figures 6.32 to 6.35 for 

comparing the reactions of the collected field data and the FE model. 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 129

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

Load (lbs)

Load Cell

Case I 35 -33 -9 -46 2 -39 33 -22 47 7 -31 16 24 -23 -22 -13 -43 -45 -52 -53 -34 22

FEM -23 -59 -125 -86 -86 -97 -94 -89 -85 -79 -78 -78 -77 -74 -68 -67 -74 -76 -78 -121 -38 -34

Case II 33 -40 -26 -63 -24 -62 9 -40 22 -28 -62 -17 -6 -52 -41 -32 -47 -49 -49 -42 -27 47

N01 N02 N03 N04 N05 N06 N07 N08 N09 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22

 
Figure 6.32.  Comparison of wind load reactions recorded by the load cells along the north 

wall with those computed using the wind pressures/suction from the FE model 
at a wind speed of 56.2 mph 
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Figure 6.33.  Comparison of wind load reactions recorded by the load cells along the south 

wall with those computed using the wind pressures/suction from the FE model 
at a wind speed of 56.2 mph 
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Figure 6.34.  Comparison of wind load reactions recorded by the load cells along the east 

wall with those computed using the wind pressures/suction from the FE model 
at a wind speed of 56.2 mph  
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Figure 6.35.  Comparison of wind load reactions recorded by the load cells along the west 

wall with those computed using the wind pressures/suction from the FE model 
at a wind speed of 56.2 mph 
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 Figures 6.32 to 6.35 indicated that the only region where a less compressive reaction 

should have occurred was near the southeast wall, where there was pressure into the test 

structure.  Both Case I and Case II of the field data did not capture this trend.  The FE model 

showed this trend to be true to the estimated evaluation only along the east wall.  The total 

wind effect for Case I showed a total wind loading of 211 lbs.  This positive number 

indicated that there was some pressure built up on the test structure and weight was added to 

the test structure, which may have been due to precipitation during the hurricane event.  This, 

however, was not reflected by the measurements of the pressure cells, as these pressure cells 

measured mostly suctions, which should have generally shown a consequent decrease in load 

cell reactions.  The FE model showed this theoretical estimate to be true.  The total wind 

loading for Case II was –1,201 lbs, which was the worst case scenario for wind loading.  

Although the wind effect was closer in comparison for Case II to the FE model’s total wind 

loading of –4,041 lbs, there was an extreme amount of error between these data sets. 

For further comparison of this static wind pressure along with the two other static 

wind pressures modeled and assumed, please turn to section 6.2.2.4.  

 

6.2.2.2 Analysis under the Recorded Highest Wind Pressures 

 The wind pressures measured in psf at the highest wind pressures (Load Case 6) are 

shown in Figure 6.36.  In Figure 6.36, it is seen that only the southeast side of the test 

structure was under pressure at Load Case 6.  Therefore, the southeast side of the test 

structure should theoretically produce more compressive forces in the load cells around this 

location.  The interpolation techniques were implemented as discussed in Section 6.2.2.1.   
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Figure 6.36.  Wind pressures in psf at 43.87 mph on the roof of the test structure 
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Figure 6.37.  Wind pressures (positive values) or suctions (negative values) in psf 
represented in the FE model at 43.87 mph 

 

  The tested structure was analyzed considering only the wind pressures shown in 

Figure 6.37.  Figures 6.38 to 6.41 show the measured and the analytical results of the reaction 

loads at the load cell locations for both Case I and Case II.    
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Figure 6.38.  Comparison of wind load reactions recorded by the load cells along the north 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of 43.87 mph 
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Figure 6.39.  Comparison of wind load reactions recorded by the load cells along the south 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of 43.87 mph 
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Figure 6.40.  Comparison of wind load reactions recorded by the load cells along the east 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of 43.87 mph 
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Figure 6.41.  Comparison of wind load reactions recorded by the load cells along the west 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of 43.87 mph 
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Figures 6.38 – 6.41 indicated that the only place a less compressive reaction should 

have occurred was near the southeast wall under the applied pressures.  Both Case I and Case 

II of the field data did not capture this trend.  However, the FE model showed this trend to be 

true.  The total wind effect for Case I showed a value of –592 lbs.  This negative number 

indicated that there was some suction built up by the test structure and weight was removed 

from the test structure, which was expected.  The total wind loading for Case II was –1,201 

lbs, which was the worst case scenario for wind loading.  Although the wind effect was 

closer in comparison for Case II to the FE model’s total wind loading of –6,888 lbs, there 

was an even more extreme amount of error between these data sets.  In comparison to 

Section 6.2.2.1, this negative reaction should be higher than the previous analysis due to the 

higher suctions recorded from the test structure’s pressure cells.     

For further comparison of this static wind pressure along with the other two static 

wind pressures modeled and assumed, please refer to Section 6.2.2.4. 

 

6.2.2.3 Analysis under Maximum Suction Recorded over a 2-Minutes Interval 

 The maximum suction induced by wind in psf over a ± 1-minute interval around Load 

Case 9 that corresponded to the time that induced the maximum suction on the roof are 

shown in Figure 6.42.  As discussed in Section 6.2.2.1, the interpolation techniques were 

implemented to find the equivalent wind pressure acting on each sheathing element, which is 

shown in Figure 6.43.  Consequently, the entire roof was subjected to much larger suction in 

this particular analysis than in the previous analyses.  Therefore, this wind load case should 

theoretically cause the highest uplifting force to the roof of the test structure, resulting in 
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higher reduction to the compressive forces in the load cells, which were induced by the 

gravity load.  

 

 
Figure 6.42.  Wind pressures in psf at ± 1 minute from 43.87 mph on the roof of the test 

structure  
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Figure 6.43. Wind pressures (positive values) or suctions (negative values) in psf represented 
in the FE model at ± 1 minute from 43.87 mph  

 

  Presented in Figures 6.44 to 6.47 are the results of the finite element analysis of the 

test roof subjected to the wind pressures shown in Figure 6.43.  Again results from the two 

cases are compared to the finite element analysis results in all figures.  Case I shows the 

measured load cell reaction recorded by individual load cell during the 2-minute interval to 

capture the maximum effect of suction imposed on the roof.  Case II results corresponded 

once again to Load Case 8 minus Load Case 3 for a worst case scenario.    
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Figure 6.44.  Comparison of wind load reactions recorded by the load cells along the north 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of ± 1 minute from 43.87 mph 
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Figure 6.45.  Comparison of wind load reactions recorded by the load cells along the south 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of ± 1 minute from 43.87 mph 
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Figure 6.46.  Comparison of wind load reactions recorded by the load cells along the east 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of ± 1 minute from 43.87 mph 
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Figure 6.47.  Comparison of wind load reactions recorded by the load cells along the west 

wall with those computed using the wind pressures/suctions from the FE 
model at a wind speed of ± 1 minute from 43.87 mph 
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Figures 6.44 to 6.47 indicated that the only place a less compressive reaction should 

have occurred was near the northeast and southeast wall due to the lower suctions 

experienced at these locations.  Both Case I and Case II of the field data did not capture this 

trend.  However, the FE model showed this trend to be true.  The total wind effect for Case I 

showed a value of –1,204 lbs.  This negative number indicated that there was some suction 

built up by the test structure and weight was removed from the test structure, which was the 

expectation.  The total wind loading for Case II was –1,201 lbs, which was the worst case 

scenario for wind loading.  Both Case I and Case II are much closer in comparison, but are 

extremely poor in comparison to the FE model’s total wind loading of –9,083 lbs.  This 

negative reaction theoretically should be the highest of the previous analyses due to the 

higher suctions recorded from the test structure’s pressure cells.    

For further comparison of this load case with the results of the previous two static 

wind effects model, refer to Section 6.2.2.4. 

 

6.2.2.4 Comparison of Results from Load Cases 5, 6, and 9  

The total reactions of the test roof’s field data and FE model are summarized for Load 

Cases 5, 6, and 9 in Table 6.3 below. 
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Table 6.3.  Comparison of total measured reactions under the test roof due to wind loads for 
Load Cases 5, 6, and 9 

 
Total Measured Reactions 

by Load Cells (lbs) 
Source Load Case 5 Load Case 6 Load Case 9

Case I and Case II (gravity loading) 13,087 13,087 13,087 
Case I (gravity and wind loading) 13,298 12,495 11,883 
Case II (gravity and wind loading) 11,886 11,886 11,886 
Case I (wind loading) 211 -592 -1,204 
Case II (wind loading) -1,201 -1,201 -1,201 
FEM (wind loading) -4,041 -6,888 -9,083 
Percent error FEM vs Case I (wind loading) (%) 105.22 91.41 86.74 
Percent error FEM vs Case II (wind loading) (%) 70.28 82.56 86.78 

 

A summary of the results from FE analyses are compared in Table 6.3, which 

generally shows poor correlations between the FE model results and the wind loading effect 

of the field data for the three load cases evaluated.  The FE analysis results significantly over 

predict the wind loading effect in all cases.  However, the decrease in total reaction due 

mainly to the suction caused by the wind effect is seen for both the FE model and the field 

data Case I.  Case II showed a much closer prediction due to the worst case scenario of wind 

loading.  The total weight of the test roof was not very conservative between the field data 

for Hurricane Katrina and the FE model.   The larger FE model loads on the test structure 

could be attributed to almost every sheathing element being loaded normal to its surface, 

ignoring the influence of precipitation, and assumptions of boundary conditions used in the 

FE model formulation.  Also, the possibility exists that the test structure may have undergone 

settlements at specific locations, due to quick spikes in pressures and suctions during the 

hurricane event.      
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6.3 Evaluation of Wind Load as per ASCE 7-02 Standard 

 The wind pressure distributions established for the roof of the test structure in 

Chapter 4 from ASCE 7-02 Standard is further examined in this section.  In this process, two 

wind speeds are considered and the effects of gravity load are eliminated from both the field 

data and the FE analysis.  First, the wind speeds of 120.34 mph (as established in Section 

4.3.1), is of interest because this is the maximum wind speed that the test structure may 

experience with a 50-year or 100-year return period according the ASCE 7-02 Standard.  

Second, the wind speeds of 50.33 mph (as established in Section 4.3.1), which was the peak 

wind speed recorded near the test structure during Hurricane Katrina.   

The direction of both the 120.34 mph and 50.33 mph wind speeds were taken as the 

east-southeastern direction, which was the observed direction of the peak wind speeds during 

Hurricane Katrina.  The wind load effects stipulated from the ASCE 7-02 Standard were 

modeled as an equivalent static wind load pressure.  This necessitated that the field data must 

be justified as to which wind speed and duration should be used for interpreting the wind 

load from the ASCE 7-02 Standard.  It is worthy to note that when using the field data, the 

length of wind record, sampling error, averaging time, anemometer height, data quality, and 

terrain exposure of the anemometer should be taken into account whereas the ASCE 7-02 

Standard uses only the basic wind speeds for the structure located in Pensacola, Florida.   

According to article C6.5.4.2 of the ASCE 7-02 Standard, sampling errors can lead to 

large uncertainties in specification of the 50-year wind speed.  These sampling errors are the 

errors associated with the limited size of the climatological data samples.  As noted in the 

ASCE 7-02 Standard, it is possible to have a 20 mph error in wind speed at an individual 

station with a record length of 30 years.   Also, the ASCE 7-02 Standard states that if the 
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meteorological data are used to justify a wind speed lower than 85 mph 50-year peak gust at 

a height of 33 ft, an analysis of sampling error is required to demonstrate that the wind record 

could not happen by chance.  The wind record could be proven by showing that the 

difference between predicted wind speed and 85 mph contains 2 to 3 standard deviations of 

sampling error (ASCE 7, 2003).  Other equivalent methods could be used for proving that the 

wind speed record could not happen by chance.  The peak wind speed during Hurricane 

Katrina was verified by comparing it against those reported for the region.  For example, the 

peak wind speed reported by the TV station WEAR in Pensacola, Florida, was determined to 

be 57.5 mph and was estimated to be a close comparison (2.33% error) to the peak wind 

speeds determined from the anemometer by the FPL researchers (see Section 3.5).   

 

6.3.1 Wind Pressure Distribution as per ASCE 7-02 Standard 

Both the wind pressure distributions for the MWFRS and C&C design were presented 

in Chapter 4 for Method 1 and 2 using the ASCE 7-02 Standard.  Both wind pressure 

distributions are considerably different because one corresponds to an average wind pressure 

effects while the other represents the localized effects due to wind loads.   

The MWFRS uses an average wind pressure distribution over the entire test structure 

(see Figures 4.3 through 4.10 for Method 2 at 50.33 mph wind speeds and Figure 4.11 for 

Method 1 at 120.34 mph).  As Section 4.3.5.3 points out Method 1 at 50.33 mph wind speeds 

was not calculated because the design charts of the ASCE 7-02 Standard do not work for 

wind speeds below 85 mph.  Also, Section 4.3.5.2 points out that to find the wind pressures 

at 120.34 mph for Load Cases 1 through 4, the wind pressures, torsional component, and 

overhang pressure need to be multiplied by 5.72.  The MWFRS approach envelops the wind 
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pressures due to the internal pressures applied to the overall wind pressure design (as 

established in Section 4.3.5).  This design load is what the test structure could see with a 

return period of 50 or 100 years (as established in Section 2.4).  The C&C showed a higher 

wind pressure distribution for the hip roof due to the localized pressures that the test roof 

may see with a 50-year and 100-year return period (see Figures 4.18 through 4.21 for Method 

2 and Figures 4.22 and 4.23 for Method 1).  However, the test roof may not see these design 

wind pressures throughout the whole structure at one particular time or particular duration.  

The C&C design is very conservative in comparison to the MWFRS design.  Tables 6.4 and 

6.5 highlight this conservative difference of the MWFRS and C&C design for Method 1 and 

Method 2 design wind pressures and total loading at the peak Hurricane Katrina wind speed 

of 50.33 mph and the maximum expected wind speed for Pensacola, Florida, of 120.34 mph, 

respectively.  The pressure distributions applied to the FE model as per the ASCE 7-02 

Standard are provided in Appendix B.  The additional load was taken from the FE model 

with the ASCE 7-02 Standard pressure distributions due to wind loading only. 

 
Table 6.4.  Comparison of MWFRS and C&C design wind pressure distributions for 50.33 

mph wind speed on the hip roof using Method 1 and 2 of the ASCE 7-02 
Standard without gravity loading 

 MWFRS C&C  
Applied  Method 1 Method 2 Method 1 Method 2

Pressure (psf) Case 1 Case 1 Case 2 Case 3 Case 4     
Minimum  N/A -3.41 -2.68 -1.80 -2.23 N/A -7.94 
Maximum N/A -0.27 -0.32 -0.39 -0.29 N/A 1.73 

                
Added Weight* 

(lbs)               

Minimum   -3226 -2576 -2426 -2270     
Maximum   -1231 -1080 -927 -1147     

* Indicates the gain or reduction in equivalent weight of the roof due to wind effect 
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Table 6.5.  Comparison of MWFRS and C&C design wind pressure distributions for 120.34 
mph wind speed on the hip roof using Method 1 and 2 of the ASCE 7-02 
Standard without gravity loading 

 
 MWFRS C&C  

Applied  Method 1 Method 2 Method 1 Method 2
Pressure (psf) Case 1 Case 1 Case 2 Case 3 Case 4     

Minimum  -63.70 -19.49 -15.30 -10.28 -12.75 -30.30 -45.38 
Maximum -16.32 -1.55 -1.16 -2.21 -1.66 10.50 9.90 

                
Added Weight* 

(lbs)               

Minimum -37309 -18604 -14454 -14476 -12975     
Maximum   -6851 -5900 -5922 -6554     

* Indicates the gain or reduction in equivalent weight of the roof due to wind effect 
 
 
 As expected, Table 6.4 indicates that C&C design wind pressures are considerably 

higher than the MWFRS design wind pressures.  The average of the minimum pressures for 

Method 2 MWFRS Load Cases was –2.53 psf, which was 3.14 times lower than the 

minimum Method 2 C&C design pressures.  The average of the maximum pressures for 

Method 2 MWFRS Load Cases was –0.32 psf, which was 6.46 times lower than the 

maximum C&C design pressures.  The average of the minimum added weight of the four 

Load Cases for Method 2 MWFRS was –2,624 lbs.  The average of the maximum added 

weight of the four Load Cases for Method 2 was –1,096 lbs.      

 Similarly, Table 6.5 shows that C&C design wind pressures are considerably higher 

than the MWFRS design wind pressures.  The average of the minimum pressures for Method 

2 MWFRS Load Cases was –14.45 psf, which was 4.41 times lower than the minimum 

pressures of Method 1 MWFRS, 2.10 times lower than Method 1 of the minimum C&C 

design pressures, and 3.14 times lower than Method 2 of the minimum C&C design 

pressures.  The average of the maximum pressures for Method 2 MWFRS Load Cases was –
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1.65 psf, which was 10 times lower than the maximum pressures of Method 1 MWFRS, 7.38 

times lower than maximum C&C design pressures, and 7.02 times lower than Method 2 of 

the maximum C&C design pressures.  The average of the minimum added weight of the four 

Load Cases for Method 2 MWFRS was –15,127 lbs, which was 2.47 times lower than 

Method 1 MWFRS minimum added weight.  The average of the maximum added weight of 

the four Load Cases for Method 2 was –6,307 lbs.      

 The wind pressure distributions applied to the FE model are provided in Appendix B.  

All the wind pressures were applied to the FE model in the direction normal to the surface of 

the sheathing elements.  The torsional component, which is found from the forces calculated 

on the sheathing element, included in Load Cases 2 and 4 was also transferred to equivalent 

pressures normal to the sheathing elements of the hip roof in the following way: 

• First, the torsional component was multiplied by the mean roof height of the test 

structure. 

• Second, the overall torsion is dispersed to forces at the walls with eccentricity that is 

shown in Figure 6.48. 
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Figure 6.48.  Equivalent forces to simulate the effects of torsion on the FE model 

 

• Thirdly, the force components are found such that the force times the eccentricity 

about the center of the test structure is equal.  Hence, the force components were 

found by Eq. 6.2 below: 

 

xTxSMT 1422 +=      (6.2) 

xTS
22
14

=       (6.3) 

 

• Lastly, the T and S forces were distributed along half the length of the wall.  Figure 

6.48 shows the hip roof surface that each distributed force will act was half of each 

hip roof surface to provide torsion on the test structure.   
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The strategy described above for applying the torsion to the finite element model of 

the roof was to avoid applying a concentrated moment as it can cause large localized 

deformations in the test structure.  Refer to Appendix B for all the pressure distributions as 

applied in the FE model. 

  

6.3.2 Comparison of Method 2 MWFRS Design Pressures against Field Data 

 The Method 2 MWFRS design pressures are directly compared to the field data from 

Hurricane Katrina in this section.  Using the peak wind speed of 50.33 mph (as established in 

Section 4.3.1) established for Hurricane Katrina in the field for both cases, it is of interest to 

compare the code based values with the field data.  Theoretically these loads should be close 

to one another if the field conditions match with those assumed in the Standard.  Since the 

MWFRS is an average envelope of the design pressures, the field data must be averaged as 

well.  Therefore, time intervals of 10 minutes and 2 hours were used to average the field data.  

The gravity load was eliminated from the FE analysis by simply turning off the gravity 

effect.  The gravity load of the field data was subtracted out using Case I from Section 6.2.2.  

Case I in Table 6.3, which used Load Case 3, was used for the gravity load to subtract.  

Figures 6.49 through 6.52 compare the field data of the load cells for the four walls with the 

FE results obtained using the ASCE 7-02 Standard Method 2 MWFRS design wind pressures 

at 50.33 mph wind speeds.   

 In all cases, negative reactions indicate a loss of weight of the test roof due mostly to 

suctions induced by the wind.  Conversely, positive reactions indicate a gain in weight due to 

pressure attacking the test roof.  Also included in the figures are the minimum and maximum 

reactions taken from the FE model, which were established by finding all the reactions at the 
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load cells for each load case pressure distribution as per the ASCE 7-02 Standard.  The 

average reactions were similarly determined.  Since all four load cases used by Method 2 

MWFRS design wind pressures had two FE plots (see Appendix B) for each load case due to 

the internal pressure enveloping the wind pressures, it was seen that a better comparison to 

the field data would be to look at each individual load cell for the wind effect, instead of each 

load case individually. 
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Figure 6.49.  Load cell reactions from the north wall obtained for wind loads using peak wind 

speed of 50.33 mph during Hurricane Katrina and comparison with FE 
analysis results obtained using the ASCE 7-02 Standard MWFRS pressure 
distributions for Method 2 
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Figure 6.50.  Load cell reactions from the south wall obtained for wind loads using peak 

wind speed of 50.33 mph during Hurricane Katrina and comparison with FE 
analysis results obtained using the ASCE 7-02 Standard MWFRS pressure 
distributions for Method 2 
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Figure 6.51.  Load cell reactions from the east wall obtained for wind loads using peak wind 

speed of 50.33 mph during Hurricane Katrina and comparison with FE 
analysis results obtained using the ASCE 7-02 Standard MWFRS pressure 
distributions for Method 2 
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Figure 6.52.  Load cell reactions from the west wall obtained for wind loads using peak wind 

speed of 50.33 mph during Hurricane Katrina and comparison with FE 
analysis results obtained using the ASCE 7-02 Standard MWFRS pressure 
distributions for Method 2 
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 Figures 6.49 to 6.52 indicate that at the peak wind speed of 50.33 mph the averaged 

field data for both time intervals was nearly identical.  This averaging of the field data was 

also looked at for 3 minutes, 5 minutes, 30 minutes, and 1 hour.  This analysis showed little 

difference and was not included in the discussion.  The reason why there was little difference 

in the averaged field data was that the average wind speeds were nearly identical to 25.9 mph 

because of the fluctuation that happened during each time interval.  Obtaining the reactions 

for the FE model’s applied pressure distributions from the ASCE 7-02 Standard Method 2 

MWFRS design wind pressures yielded a good spread of reactions for the minimum, 

maximum, and average reactions for all four walls. 

   Figures 6.49 to 6.52 also showed that the averaged field data for all the walls 

fluctuated greatly between adjacent load cells.  The reason for the fluctuating load cell 

reactions may have been the assumed gravity loading subtracted out of the field data and the 

reasons concluded in the gravity analysis (see Section 6.1).  There can be no comment on the 

conservative nature of the ASCE 7-02 Standard to the field data because the results do not 

show a satisfactory comparison to analyze.  Had the field data lie between the bounds of the 

ASCE 7-02 Standard pressure distributions utilized for Method 2 MWFRS design wind 

pressure or made a more linear variation between the field data load cells, this conservative 

or nonconservative nature could have been addressed.   

 

6.3.3 MWFRS Design Pressures as per Method 2 

 The comparison of Method 2 MWFRS design pressures at 50.33 mph (as established 

in Section 4.3.1) are compared to Method 2 MWFRS design pressures at 120.34 mph (as 

established in Section 4.3.1) in this section to show the expected change in loads at the 
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highest possible wind speed.  Theoretically the loads caused by the higher wind speeds 

should cause higher reactions at the loads cells because the pressure is increased on the test 

roof at a higher wind speed.  Since the MWFRS is an average envelope of the design 

pressures, the load cells (support reactions) in the FE model were analyzed on an individual 

basis, instead of each load case.  The gravity load was taken out of the FE analysis by simply 

turning off the acceleration of gravity.  Figures 6.53 through 6.56 show all four walls of the 

load cells used for comparison of the ASCE 7-02 Standard Method 2 MWFRS design wind 

pressures at 50.33 mph and 120.34 mph wind speeds.  Refer to Appendix B to see the FE 

model’s applied wind pressure, as per the ASCE 7-02 Standard.  

 Negative reactions indicated a loss of weight on the test structure due mostly to 

suctions on the test roof.  Positive reactions indicated a gain in weight on the test structure 

due to pressure attacking the test roof.  The minimum and maximum reactions taken from the 

FE model were found by finding all the reactions at the load cells for each Load Case 

pressure distribution as per the ASCE 7-02 Standard and then the minimum and maximum 

reactions at each individual load cell were compared.  The average reactions were similarly 

determined.  Since all four load cases used by Method 2 MWFRS design wind pressures had 

two FE plots (see Appendix B) for each load case due to the internal pressure enveloping the 

wind pressures, it was seen that a better comparison to the field data would be to look at each 

individual load cell for the wind effect, instead of each load case individually. 

 

 

 

 



www.manaraa.com

 155

-700

-600

-500

-400

-300

-200

-100

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Load Cells (n*)

Lo
ad

 (l
bs

)

FEM at 120.34 mph wind speed using ASCE 7 pressure distributions (minimum reactions)

FEM at 120.34 mph wind speed using ASCE 7 pressure distributions (maximum reactions)

FEM at 120.34 mph wind speed using ASCE 7 pressure distributions (average reactions)

FEM at 50.33 mph wind speed using ASCE 7 pressure distributions (minimum reactions)

FEM at 50.33 mph wind speed using ASCE 7 pressure distributions (maximum reactions)

FEM at 50.33 mph wind speed using ASCE 7 pressure distributions (average reactions)

 
Figure 6.53.  FE analysis results obtained from north wall load cell reactions obtained for 

wind loads using ASCE 7-02 Standard MWFRS Method 2 pressure 
distributions at both 50.33 mph and 120.34 mph wind speeds 
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Figure 6.54.  FE analysis results obtained from south wall load cell reactions obtained for 

wind loads using ASCE 7-02 Standard MWFRS Method 2 pressure 
distributions at both 50.33 mph and 120.34 mph wind speeds  
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Figure 6.55.  FE analysis results obtained from east wall load cell reactions obtained for wind 

loads using ASCE 7-02 Standard MWFRS Method 2 pressure distributions at 
both 50.33 mph and 120.34 mph wind speeds  
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Figure 6.56.  FE analysis results obtained from west wall load cell reactions obtained for 

wind loads using ASCE 7-02 Standard MWFRS Method 2 pressure 
distributions at both 50.33 mph and 120.34 mph wind speeds  
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Figures 6.53 to 6.56 show that the minimum reactions found at 50.33 mph wind 

speeds are generally close to the maximum reactions at 120.34 mph.  Also, the spread in 

distribution of the reactions along each wall is almost uniform and symmetric about the 

structure.  The minimum reactions at 50.33 mph wind speeds are roughly 5.78 times lower 

than the minimum reactions at 120.34 mph wind speeds and roughly 1.45 times lower than 

the maximum reactions found at 120.34 mph wind speeds.  The maximum reactions at 50.33 

mph wind speeds are roughly 6.16 times lower than the maximum reactions at 120.34 mph 

wind speeds.  The average reactions at 50.33 mph wind speeds are roughly 5.74 times lower 

from the average reactions at 120.34 mph wind speeds.  Obtaining the reactions for the FE 

model’s applied pressure distributions from the ASCE 7-02 Standard Method 2 MWFRS 

design wind pressures yielded a good spread of reactions for the minimum, maximum, and 

average reactions for all four walls.  It is noted that the test roof indicated the potential to 

uplift when the pressure distributions from the ASCE 7-02 Standard Method 2 MWFRS 

design wind pressures under the minimum reactions at 120.34 mph. 

  

6.3.4 Comparison of C&C Wind Pressures to Field Data 

Lastly, a comparison of the design wind pressures of the C&C design is compared to 

the pressure cell data obtained from the field for Hurricane Katrina.  Table 6.6 shows the 

field data obtained from Hurricane Katrina at all hours to find the minimum pressure, 

maximum pressure, and where each minimum and maximum pressure occurred.  In this 

table, a negative pressure indicates a suction and a positive pressure indicates a pressure into 

the test structure.   
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Table 6.6.  Hurricane Katrina pressures from field data in units of psf 
  Hurricane Katrina Field Data 

Time Date 
Min. 
(psf)

Min. 
pressure 
locations 

Max. 
(psf) Max. pressure location 

4:00 - 5:00 PM  August 28, 2005 -5 n03p, n15p 0 

n01p, n06p, n08p, n10p, 
n14p, s01p, s07p, s23p, 
w10p, e02p, e03p, e04p, 
e06p, e07p, e08p, e09p, 

e11p 
5:00 - 6:00 PM  August 28, 2005 -5 n03p, n15p 1 e02p, e06p 
6:00 - 7:00 PM  August 28, 2005 -5 n03p, n15p 1 e02p 
7:00 - 8:00 PM  August 28, 2005 -5 n03p, n15p 1 e02p, e06p 
8:00 - 9:00 PM  August 28, 2005 -6 n15p, n20p 1 e02p, e03p, e06p 

9:00 - 10:00 PM  August 28, 2005 -6 n15p 1 e02p, e03p, e06p 
10:00 - 11:00 PM  August 28, 2005 -7 n15p 2 e02p 

11:00 PM - 12:00 AM  August 28, 2005 -6 n15p 2 e02p 
12:00 - 1:00 AM  August 29, 2005 -6 n15p 2 e02p 
1:00 - 2:00 AM  August 29, 2005 -9 e14p 3 e04p, e09p 
2:00 - 3:00 AM  August 29, 2005 -8 n15p 2 e06p 
3:00 - 4:00 AM  August 29, 2005 -7 n15p 2 e02p 
4:00 - 5:00 AM  August 29, 2005 -7 n15p 2 e02p 
5:00 - 6:00 AM  August 29, 2005 -6 n03p, n15p 2 s04p, e02p 
6:00 - 7:00 AM  August 29, 2005 -8 s15p 2 e06p, e09p, e12p 

7:00 - 8:00 AM  August 29, 2005 -8 s09p 2 
e02p, e03p, e06p, e08p, 

e09p, e11p, e12p 
8:00 - 9:00 AM  August 29, 2005 -10 s09p 3 e09p 

9:00 - 10:00 AM  August 29, 2005 -10 s09p, s15p 3 s04p, e03p, e06p, e08p 
10:00 - 11:00 AM  August 29, 2005 -12 s09p 3 e06p 

11:00 AM - 12:00 PM  August 29, 2005 -11 s09p, s15p 3 e02p, e09p, e12p 
 12:00 - 1:00 PM  August 29, 2005 -13 s09p, s15p 4 e06p 

1:00 - 2:00 PM  August 29, 2005 -19 s15p 3 
s04p, s23p, e06p, e09p, 

e13p 

2:00 - 3:00 PM  August 29, 2005 -16 s09p 4 
s05p, s09p, s11p, s17p, 

s18p, s20p, s23p 
3:00 - 4:00 PM  August 29, 2005 -14 n20p, w11p 5 s18p, s23p 
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Table 6.6 suggests that the minimum pressure was a suction of –19 psf while a 

maximum pressure of up to 5 psf was developed on the test roof.  Also, the pressure data 

summarized in this table indicate that Hurricane Katrina produced the maximum wind effects 

toward the end of the data collection period by recording the highest and lowest pressures.  It 

should be noted that the reason the instrumentation was stopped after 4:00 PM on August 29, 

2005 was due to loss of power (FPL, 2006).  Therefore, the remaining discussion will focus 

on the period within which the data was collected.     

As previously mentioned in Section 3.5, the peak wind speed was from the east-

southeastern direction.  Theoretically the east and southeast corners of the test structure 

should see the most wind pressures into the test structure and suctions at the leeward or far 

northwest corner of the structure.  Table 6.6 shows that the maximum pressure into the test 

structure occurred mostly along the east wall and the minimum pressure was along the north 

wall.  This is in good agreement with the predominant direction identified for wind attack in 

that large pressures experienced on the windward walls and large suctions experienced on the 

leeward walls.  However, this was not in good agreement with the ASCE 7-02 Standard 

because most of the wind pressure distributions showed suctions at the wind speeds analyzed 

from the east-southeastern direction (see Appendix B).  Reasons for this discrepancy could 

have been due to the change in wind direction when the maximum and minimum pressures 

occurred on the test roof. 

The minimum and maximum pressures were only compared for the C&C design wind 

pressures and the field data shown in Table 6.6.  As Table 6.4 showed, the C&C design 

maximum pressure was 1.73 psf and the minimum pressure was –7.94 psf.  Therefore, since 

the maximum pressure was 2.89 times higher in the field than the C&C and the minimum 
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suction was 2.39 times higher in the field, the ASCE 7-02 Standard’s C&C design wind 

pressure distribution was not very conservative.     
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CHAPTER 7.  SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE RESEARCH 

 
 
 

7.1 Conclusions 

This chapter summarizes the findings of the study presented in this report and 

recommend opportunities for future research.   

 

7.1.1 Analysis of the Tested Structure Under Gravity Load 

Section 6.1 addressed the gravity analysis of the FE model produced for the test roof.  

The purpose of this analysis was to examine how well the gravity analysis results obtained 

from the FE model compared to the comparable field data. 

The FE results were first compared with data corresponding to four low wind speeds 

measured both before and after the peak wind speed during Hurricane Katrina occurred.  The 

load cells were compared using Load Cases 1, 2, 3, and 4 to the FE results as shown in 

Figures 6.1 – 6.4.  The field data showed a close comparison between one another compared 

to the reactions obtained from the FE results.  It should be noted that the load cells located at 

the identical location did not give an identical reading.  This indicated that there were some 

discrepancies between the load cells measured in the field.     

When the load cells from identical locations were averaged using the lowest wind 

speed of 0.13 mph (Load Case 3) and compared with the FE results, the results were much 

closer as shown in Figures 6.5 – 6.8.  This showed a much closer comparison to the FE 

results and improved the comparison between the data sets.  A few load cells, however, 
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showed a ±10% error along the north and south walls.  These errors may have been attributed 

to the variations due to the realistic support conditions at these particular locations of 

discrepancy.   

The following conclusions were drawn from this part of the study: 

• Since the field data from Hurricane Katrina was not tested under calm wind 

conditions prior to a hurricane event, it was determined that taking a periodic gravity 

load measurement during wet and dry seasons would alleviate this problem.  Also, the 

FPL group did find initial load cell reactions when the load cells were first 

instrumented to the test roof.  However, this load of 16,149 lbs was 23.4% larger than 

the gravity load chosen of 13,087 lbs.   

• Since the gravity load analysis was done at low wind speeds, it was assumed that the 

wind loads were found by subtracting out the gravity load of 13,087 lbs established at 

a wind speed of 0.13 mph.  This consequently indicated when there was a suction or 

pressure imposed on the test roof.  Although the pressure cells on the test roof could 

verify this, the pressure experienced on a residential roof can be subjected to localized 

behavior.  It is recommended that by instrumenting the test roof more heavily, it may 

be directly determined if the test roof was experiencing a suction or pressure during a 

hurricane event.   

• Finally, to determine if the FE model was modeled correctly in Chapter 5, a field test 

could be carried out with static point loads applied.  By testing the roof at the 

specified load cells, the discrepancies seen in Figures 6.5 – 6.8 and the hip rafter 

(Figure 3.4), the load sharing evaluation and modeling approach in the FE model 

could be better verified.   Also, by recalibrating the load and pressure cells in the test 
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roof, the reliability of the field data could be verified.  This recalibration could be 

done by carefully removing a particular load cell or pressure cell out of the test roof 

and recalibrating it before placing it back in the test roof. 

   

7.1.2 Analysis of the Tested Structure Under Wind Loads 

 Section 6.2 addressed the wind effect for three different static wind speeds.  The 

purpose of this section was to address how well the static normal wind pressures recorded in 

the field compared to the linearly interpolated field pressures applied to the FE model for 

calculating the load cell reactions.   

Two static times and one time interval were chosen for this wind effect analysis.  The 

loading cases were as follows: 1) wind effect due to the peak wind speed of 56.2 mph (Load 

Case 5), 2) wind effect due to the highest pressures recorded at 43.87 mph (Load Case 6), 

and 3) wind effect due to a 2-minute interval around the time that recorded the highest 

pressures and a wind speed of 43.87 mph (Load Case 9).  The three static wind speeds 

chosen evaluated the design pressures recorded on the test roof at the aforementioned wind 

speeds and linearly interpolated the recorded pressures at the discrete locations (see Figure 

3.8) to apply the appropriate design pressures to the sheathing elements of the FE model.  

The gravity loading was subtracted from the field data using two different Cases.  Case I was 

for the lowest wind speed (Load Case 3) and Case II was the worst case scenario (Load Case 

8 minus Load Case 3).  The gravity load effects were also removed from the FE model.  

Figures 6.32 – 6.35, 6.38 – 6.41, and 6.44 – 6.47 show the resulting reactions measured from 

the three applied static normal pressures for both Case I and Case II of the field data and the 

FE model.  Table 6.3 shows the overall comparison of the three wind loads applied.    



www.manaraa.com

 164

From Table 6.3 and aforementioned figures, the tabulated results generally showed 

poor correlation between the FE model results and the wind loading effect of the field data.  

However, the increase of loading due to the wind effect for both the FE model and the field 

data were evident.  Case II showed a much closer prediction to the FE model’s reactions 

measured due to the worst case scenario chosen for the wind load.  The total weight on the 

test roof was not very conservative between the field data obtained for Hurricane Katrina and 

the FE model.   Discrepancies between the data sets could have been attributed to almost 

every sheathing element of the FE model being loaded normal to its surface, ignoring the 

influence of precipitation, and modeling of boundary conditions used in the FE model.  Also, 

the possibility exists that the test structure may have undergone settlement at specific 

locations, due to quick spikes in pressures and suctions during the hurricane event.   

   The following suggestions were drawn from this part of the study: 

• Since the wind applied to the test roof was applied normal to the test roof in psf due 

to the discrete pressure cell locations, the need exists to determine if there are any 

other vertical or horizontal wind loads acting on the test structure as well.  Analysis of 

this issue may correct the large discrepancy between the FE model and the field data. 

•  As was discussed previously in Section 7.1.1, a static loading analysis would be 

pertinent to see if the load-sharing used in the roof system is not modeled correctly in 

the FE model.  

• More pressure ports in the roof system could be utilized to obtain a better distribution 

of wind load. 
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7.1.3 Evaluation of Wind Load as per ASCE 7-02 Standard 

Section 6.3 addressed the wind effect as per the ASCE 7-02 Standard (see Chapter 4) 

for both the main wind force-resistance system (MWFRS) and the components and cladding 

(C&C).  The purpose of this section was to investigate the conservative nature of the 

Standard when used for wind design in the hurricane prone region of Pensacola, Florida.  

This section of the report showed how well both the MWFRS and C&C wind design 

methodologies compared, and examined the field data to the pressure distributions of the 

MWFRS at the peak wind speed of Hurricane Katrina.     

As Section 6.3.1 showed, the design pressures obtained for the MWFRS and the C&C 

differed significantly.  This was anticipated due to the fact that the C&C values represent 

localized pressure expected at any particular region and time and the MWFRS shows an 

averaged pressure over the entire structure applied for a given time.  Since the pressures 

specified in the ASCE 7-02 Standard for the MWFRS were applied to the FE model, the 

wind loading effect was quantified in terms of equivalent weight of the roof system could be 

found for the wind loading effect.   

As Section 6.3.2 showed, the design pressures for the MWFRS were compared to the 

field data for the peak wind speed of 50.33 mph (as established in Section 4.3.1) during 

Hurricane Katrina.  The results indicated that the field data did not vary much over a 10-

minute averaging time or a 2-hour averaging time.  The field data showed large fluctuations 

in the reactions recorded between adjacent load cells over the time interval.  The reason for 

the fluctuating load cell reactions may have been the assumed gravity loading subtracted out 

of the field data and the reasons concluded in the gravity analysis (see Section 6.1).  There 

can be no comment made on the conservative nature of the ASCE 7-02 Standard to the field 
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data because the results did not show a satisfactory comparison to analyze.  Had the field 

data lie between the bounds of the ASCE 7-02 Standard pressure distributions utilized for 

Method 2 MWFRS design wind pressure or made a more linear variation between the field 

data load cells, this conservative or nonconservative nature could have been addressed.   

As Section 6.3.3 showed, the design pressures for the MWFRS at both 50.33 mph and 

120.34 mph wind speeds were applied to the FE model for comparison with load cell 

reactions.  Although the trend lines were followed for the general shape of the reactions 

measured, the window from the minimum reactions measured to the maximum reactions 

measured increased significantly.  This indicated that as the wind speeds increased, the 

window of reactions measured increased significantly. 

As Section 6.3.4 showed, the design pressures for the C&C and the field data were 

compared.  The maximum and minimum values measured in the field showed a much larger 

values than the C&C pressures established from the ASCE 7-02 Standard.  This indicated 

that the C&C approach was not conservative when compared to the field data from Hurricane 

Katrina. 

The following suggestions were drawn from this part of the study: 

• The ASCE 7-02 Standard showed much variation in design pressures for the MWFRS 

and C&C approaches.  This was due to the localized effect estimated to occur during 

the C&C approach and the average wind loading estimated to occur during the 

MWFRS approach. 

• The ASCE 7-02 Standard could not be addressed for its conservative nature when 

comparing the MWFRS applied pressures to the FE model to the field data at the 
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peak wind speed for Hurricane Katrina due to the variations in load cell data obtained 

from the field. 

• As the wind speeds increased and subsequently the pressures imposed on the FE 

model of the roof increased, the window of the minimum and maximum reactions 

increased as well.   

• Finally, when comparing the C&C approach to the field data, the field data recorded 

significantly higher reactions than the C&C approach for the peak wind speed of 

Hurricane Katrina.  The C&C estimated in the ASCE 7-02 Standard was not 

conservative when compared to field data for a hurricane event at similar wind 

speeds.  The maximum pressure was 2.89 times higher in the field than the C&C 

pressures and the minimum suction was 2.39 times higher in the field than the C&C 

pressures. 

 

7.2 Future Research 

The purpose of this section is to address the possible areas of future research that may 

be utilized in this subject matter at a later time.  Various areas of future research will be 

addressed in subsequent order of the chapters in this report.  For a more detailed discussion 

of this section the reader is referred to the appropriate chapters as will be mentioned below. 

 

7.2.1 Chapter 2: Literature Review 

A FE approach to modeling the entire light frame building (LFB) was provided in this 

chapter.  Modeling the entire structure was important because much of the response and 

performance of a light-frame building (LFB) is dictated by the structure’s diaphragms and 
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intercomponent connections (Collins et al. 2005).  Therefore, the connections utilized in the 

construction of the LFB must be well defined in a finite element model.  Also, proper 

estimates of the material properties used in the LFB to ensure a more accurate FE model of 

the test roof.  Kasal et al. (1994) analyzed the most detailed FE model for a LFB, which was 

tested by Phillips (1990).   

Another area of interest when modeling a roof system is to incorporate some of the 

finite element modeling assumptions that were used by Zhong et al. (1998) such as joint 

eccentricities and partial composite action.  If the test structure was tested in the field under 

static point loads, the results could be obtained for more accurate representation of the load-

sharing effects and more accurately model the connections used in construction of the rafters 

and trusses.  Also, with the field test the researchers could utilize the data to incorporate 

spring elements at the connections of the rafters and trusses. 

 

7.2.2 Chapter 3: Details of the Test Structure and Instrumentation Scheme 

A full 24-hour duration of Hurricane Katrina field data was provided by the FPL 

group.  This data could be further evaluated to find several different comparisons for 

statistical purposes of correlations between other Hurricanes in the area including, historical 

wind speeds for the area, dynamic analysis evaluation given the wind speeds direction and 

magnitude from Hurricane Katrina, and load cell and pressure cell data found from other 

Hurricanes collected on the test structure.  These are only a few of the possible areas of 

future research for the instrumentation of the test structure and statistical analysis.  
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7.2.3 Chapter 4: Distribution of Wind Pressure on the Roof in Accordance with the 

ASCE 7-02 Standard 

This chapter provided the minimum design wind loads for the whole structure as well 

as the components and cladding, which analyzed the studs in the walls and the rafters and 

trusses in the hip roof, using the ASCE 7-02 Standard.  Since the peak wind speeds of 

Hurricane Katrina were from the east-southeastern direction, the analysis of the results dealt 

with winds from the east and southeast.  Given that the test structure was located in 

Pensacola, Florida, for a basic wind speed of 120.34 mph (as established in Section 4.3.1), 

the test structure could be analyzed from winds from all eight quadrants.  Also, a site visit 

could analyze the site conditions around the structure, which could have influenced the 

topography used in the ASCE 7-02 Standard.  A load test on the structure could investigate 

the assumption that this was mostly a rigid structure.  Although this is a low-rise structure 

with symmetry about the ridge, a wind tunnel test could be used for comparing the results to 

the Method 1 and 2 wind design of the Standard. 
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APPENDIX A. WOOD RAFTERS AND TRUSSES USED IN 

CONSTRUCTION OF THE TEST STRUCTURE 
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APPENDIX B. FE MODEL PLOTS OF ASCE 7-02 STANDARD 
PRESSURE DISTRIBUTIONS 
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Figure B.1.  Method 2: MWFRS Case 1 for wind direction east at 50.33 mph wind speed 

with internal pressure of 0.6494 psf  
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Figure B.2.  Method 2: MWFRS Case 1 for wind direction east at 50.33 mph wind speed 

with internal suction of -0.6494 psf  



www.manaraa.com

 183

1

XY

Z

                                                                                -1.702
-1.535

-1.368
-1.202

-1.035
-.868889

-.702367
-.535844

-.369322
-.2028

MAR 18 2007
20:03:39

ELEMENTS

PRES-NORM

 
Figure B.3.  Method 2: MWFRS Case 2 for wind direction east at 50.33 mph wind speed 

with internal pressure of 0.4871 psf 
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Figure B.4.  Method 2: MWFRS Case 2 for wind direction east at 50.33 mph with internal 

suction of -0.4871 psf 
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Figure B.5.  Method 2: MWFRS Case 3 for wind direction southeast at 50.33 mph with 

internal pressure of 0.4871 psf  
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Figure B.6.  Method 2: MWFRS Case 3 for wind direction southeast at 50.33 mph with 

internal suction of -0.4871 psf  
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Figure B.7.  Method 2: MWFRS Case 4 for wind direction southeast at 50.33 mph with 

internal pressure of 0.3656 psf 
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Figure B.8.  Method 2: MWFRS Case 4 for wind direction southeast at 50.33 mph with 

internal suction of -0.3656 psf  
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Figure B.9.  Method 1: MWFRS Case 1 for wind direction east at 120.34 mph 
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Figure B.10.  Method 2: MWFRS Case 1 for wind direction east at 120.34 mph with internal 

pressure of 3.7125 psf  
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Figure B.11.  Method 2: MWFRS Case 1 for wind direction east at 120.34 mph with internal 

suction of -3.7125 psf  
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Figure B.12.  Method 2: MWFRS Case 2 for wind direction east at 120.34 mph with internal 

pressure of 2.7844 psf  
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Figure B.13.  Method 2: MWFRS Case 2 for wind direction east at 120.34 mph with internal 

suction of -2.7844 psf  
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Figure B.14.  Method 2: MWFRS Case 3 for wind direction southeast at 120.34 mph with 

internal pressure of 2.7844 psf  
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Figure B.15.  Method 2: MWFRS Case 3 for wind direction southeast at 120.34 mph with 

internal suction of -2.7844 psf  
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Figure B.16.  Method 2: MWFRS Case 4 for wind direction southeast at 120.34 mph with 

internal pressure of 2.0901 psf  
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Figure B.17.  Method 2: MWFRS Case 4 for wind direction southeast at 120.34 mph with 

internal suction of -2.0901 psf  
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